【導(dǎo)讀】若m+n=p+q,則am·an=ap·aq.由于每格的麥粒數(shù)都是前一格的2倍,它是以1為首項(xiàng),公比是2的等比數(shù)列,請(qǐng)同學(xué)們考慮如何求出這個(gè)和?一般地,設(shè)等比數(shù)列a1,a2,a3,…當(dāng)已知a1,q,n時(shí)用公式①;2.這節(jié)課我們從已有的知識(shí)出發(fā),
【總結(jié)】等比數(shù)列的前n項(xiàng)和(第1課時(shí))學(xué)習(xí)目標(biāo)掌握等比數(shù)列的前n項(xiàng)和公式及公式證明思路.會(huì)用等比數(shù)列的前n項(xiàng)和公式解決一些有關(guān)等比數(shù)列的簡(jiǎn)單問(wèn)題.合作學(xué)習(xí)一、設(shè)計(jì)問(wèn)題,創(chuàng)設(shè)情境傳說(shuō)國(guó)際象棋的發(fā)明人是印度的大臣西薩·班·達(dá)依爾,舍罕王為了表彰大臣的功績(jī),準(zhǔn)備對(duì)大臣進(jìn)行獎(jiǎng)賞.國(guó)王問(wèn)大臣:“你
2025-11-29 20:21
【總結(jié)】等比數(shù)列的前n項(xiàng)和(第2課時(shí))學(xué)習(xí)目標(biāo)掌握等比數(shù)列的前n項(xiàng)和公式,能用等比數(shù)列的前n項(xiàng)和公式解決相關(guān)問(wèn)題.通過(guò)等比數(shù)列的前n項(xiàng)和公式的推導(dǎo)過(guò)程,體會(huì)“錯(cuò)位相減法”以及分類討論的思想方法.通過(guò)對(duì)等比數(shù)列的學(xué)習(xí),發(fā)展數(shù)學(xué)應(yīng)用意識(shí),逐步認(rèn)識(shí)數(shù)學(xué)的科學(xué)價(jià)值、應(yīng)用價(jià)值,發(fā)展數(shù)學(xué)的理性思維.合作學(xué)習(xí)一、設(shè)計(jì)問(wèn)題,創(chuàng)設(shè)情
2025-11-30 03:41
【總結(jié)】知識(shí)回顧等比數(shù)列{an}的求和公式及推導(dǎo)方法。問(wèn)題探究??也成等比數(shù)列。,,求證:,項(xiàng)和為的前:已知等比數(shù)列 探究142171471SSSSSSnann??等于多少?項(xiàng)的和,那么它前項(xiàng)的和等于,前項(xiàng)和等于:如果一個(gè)等比數(shù)列前 探究1550101052??證明。請(qǐng)間滿足怎樣的關(guān)系?并,,
2025-11-09 08:10
【總結(jié)】主講老師:陳震等比數(shù)列的前n項(xiàng)和(一)復(fù)習(xí)引入1.等比數(shù)列的定義:2.等比數(shù)列通項(xiàng)公式:)0,(111????qaqaann)0,(1????qaqaamnmn復(fù)習(xí)引入3.{an}成等比數(shù)列)0,(1?????qNnqaa
2025-01-07 11:53
【總結(jié)】2.等比數(shù)列的前n項(xiàng)和學(xué)習(xí)目標(biāo)預(yù)習(xí)導(dǎo)學(xué)典例精析欄目鏈接情景導(dǎo)入九章算術(shù)有一道“耗子穿墻”的問(wèn)題:今有垣厚5尺,兩鼠相對(duì),大鼠日一尺,小鼠亦一尺.大鼠日自倍,小鼠日自半,問(wèn)幾何日相逢?各穿幾何?在實(shí)際上是一個(gè)等比數(shù)列求和的問(wèn)題,他的解法也很
2025-11-08 23:16
【總結(jié)】一、選擇題(每題4分,共16分)1.(2020·遼寧高考)設(shè)Sn為等比數(shù)列{an}的前n項(xiàng)和,已知3S3=a4-2,3S2=a3-2,則公比q=()(A)3(B)4(C)5(D)6【解析】選,得3a3=a
2025-11-12 01:09
【總結(jié)】等比數(shù)列第1課時(shí)等比數(shù)列1.理解等比數(shù)列的概念,明確“同一個(gè)常數(shù)”的含義.2.掌握等比數(shù)列的通項(xiàng)公式及其應(yīng)用.3.會(huì)判定等比數(shù)列,了解等比數(shù)列在實(shí)際中的應(yīng)用.1231.等比數(shù)列文字語(yǔ)言一般地,如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的比等于同一個(gè)常數(shù)
2025-11-08 17:05
【總結(jié)】等比數(shù)列的前n項(xiàng)和(二)課前自主學(xué)習(xí)課堂講練互動(dòng)課后智能提升理解等比數(shù)列前n項(xiàng)和的性質(zhì),并能用它解決等比數(shù)列的求和問(wèn)題.掌握數(shù)列求和的重要方法——分組法與并項(xiàng)法.課前自主學(xué)習(xí)課堂講練互動(dòng)課后智能提升1.若數(shù)列{an}為等比數(shù)列(公比q≠-1),Sn為前n項(xiàng)和,則Sn,S2n-Sn,S3n-S2n,
【總結(jié)】第7課時(shí)等比數(shù)列的前n項(xiàng)和n項(xiàng)和公式的推導(dǎo)方法.n項(xiàng)和公式解決有關(guān)等比數(shù)列的問(wèn)題..印度的舍罕王打算獎(jiǎng)賞發(fā)明國(guó)際象棋的大臣西薩·班·達(dá)依爾,并問(wèn)他想得到什么樣的獎(jiǎng)賞.大臣說(shuō):“陛下,請(qǐng)您在這張棋盤的第一個(gè)小格內(nèi)賞給我一粒麥子,在第二個(gè)小格內(nèi)給兩粒,在第三個(gè)小格
2025-11-29 02:37
【總結(jié)】第7課時(shí)等比數(shù)列的前n項(xiàng)和n項(xiàng)和公式的推導(dǎo)方法.n項(xiàng)和公式解決有關(guān)等比數(shù)列的問(wèn)題..印度的舍罕王打算獎(jiǎng)賞發(fā)明國(guó)際象棋的大臣西薩?班?達(dá)依爾,并問(wèn)他想得到什么樣的獎(jiǎng)賞.大臣說(shuō):“陛下,請(qǐng)您在這張棋盤的第一個(gè)小格內(nèi)賞給我一粒麥子,在第二個(gè)小格內(nèi)給兩粒,在第三個(gè)小格內(nèi)給四粒,照這樣下去,每一小格內(nèi)都比前一小格
2025-11-08 19:03
【總結(jié)】等比數(shù)列的前n項(xiàng)和(二)課時(shí)目標(biāo)n項(xiàng)和公式的有關(guān)性質(zhì)解題.n項(xiàng)和公式解決實(shí)際問(wèn)題.1.等比數(shù)列{an}的前n項(xiàng)和為Sn,當(dāng)公比q≠1時(shí),Sn=______________=_____;當(dāng)q=1時(shí),Sn=____________.2.等比數(shù)列前n項(xiàng)和的性質(zhì):(1)連續(xù)m項(xiàng)的和(如Sm、S
2025-11-26 10:13
【總結(jié)】2.等比數(shù)列的前n項(xiàng)和1.(1)等比數(shù)列的前n項(xiàng)和公式:當(dāng)q≠1時(shí),Sn=a1(1-qn)1-q或Sn=a1-anq1-q,當(dāng)q=1時(shí),Sn=na1.(2)已知數(shù)列{an}是等比數(shù)列,a1=3,公比q=2,則其前6項(xiàng)和S6=189.(3)已知數(shù)列{an}是等比數(shù)列,a1=
2025-11-29 13:12
【總結(jié)】課題:等比數(shù)列的n項(xiàng)和概念班級(jí):姓名:學(xué)號(hào):第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】等比數(shù)列前n項(xiàng)和公式的推導(dǎo)過(guò)程,理解前n項(xiàng)和公式的含義,并會(huì)用公式進(jìn)行有關(guān)計(jì)算【課前預(yù)習(xí)】1.推導(dǎo)公式:(1)研究633222221??????的計(jì)算;
2025-11-11 01:05
【總結(jié)】等比數(shù)列的前n項(xiàng)和(一)課時(shí)目標(biāo)n項(xiàng)和公式的推導(dǎo)方法.n項(xiàng)和公式解決一些簡(jiǎn)單問(wèn)題.1.等比數(shù)列前n項(xiàng)和公式:(1)公式:Sn=?????=qq=.(2)注意:應(yīng)用該公式時(shí),一定不要忽略q=1的情況.2.若{an}是等比數(shù)列,且公比q≠1,則前n項(xiàng)
【總結(jié)】等比數(shù)列的前n項(xiàng)和第1課時(shí)一、新課導(dǎo)入:即,①,②②-①得即.由此對(duì)于一般的等比數(shù)列,其前項(xiàng)和,如何化簡(jiǎn)?求數(shù)列:二.新課講解:Sn=a1+a1q+a1q2+…+a1qn-2+a1qn-1qSn=a1q+a1q
2025-10-07 20:25