【導讀】首頁XINZHIDAOXUE新知導學ZHONGNANTANJIU重難探究DANGTANGJIANCE當堂檢測。近線方程為,離心率是,實軸長為.,而不是a,b);求出c,再對照雙曲線的幾何性質得到相應的答案.心率和漸近線方程,并作出草圖.實半軸長是a=1,虛半軸長是b=2.x=±2x,作草圖如圖所示.c,求雙曲線的離心率.解:由l過(a,0),(0,b)兩點,
【總結】橢圓的簡單性質課程目標學習脈絡1.掌握橢圓的中心、頂點、長軸、短軸、離心率的概念,理解橢圓的范圍和對稱性.2.掌握橢圓標準方程的a,b,c,e的幾何意義及a,b,c,e之間的相互關系.3.用代數(shù)法研究曲線的幾何性質,熟練掌握橢圓的幾何性質,體會數(shù)形結合的思想.12
2024-11-16 23:22
【總結】第3課時橢圓的簡單性質的應用,加強對研究方法的思想滲透及運用數(shù)形結合思想解決問題的能力.,體會數(shù)形結合的思想以及數(shù)學的對稱美、和諧美..上一節(jié)我們共同學習了橢圓的概念、橢圓的標準方程、橢圓的簡單幾何性質,并能利用它們處理簡單的橢圓問題.橢圓是學習雙曲線和拋物線的基礎,對整個圓錐曲線的學習都起著至
2024-11-19 23:16
【總結】鹽城市時楊中學2021年達標課教學簡案學科數(shù)學授課教師張發(fā)軍授課班級高二(7)教學內(nèi)容雙曲線的幾何性質(2)課型新授課課題:雙曲線的幾何性質(2)一、三維目標:1、知識與技能:使學生掌握雙曲線的如下性質:對稱性、截距、頂點、軸、中心、離心率和準線。使學生能夠根據(jù)雙曲線的漸近線、確定雙曲線的范
2024-12-08 07:53
【總結】第5課時拋物線的簡單性質、頂點坐標和離心率并展開應用.了解“p”的意義,會求簡單的拋物線方程.、橢圓的類比,體會探究的樂趣,激發(fā)學習熱情.某公園要建造一個如圖1的圓形噴水池,在水池中央垂直于水面安裝一個花形柱子OA,O恰在水面中心,OA=米,安置在柱子頂端A處的噴頭向外噴水,水流在各個方向
2024-12-05 06:39
【總結】橢圓的簡單性質同步練習一、選擇題1.下列命題是真命題的是()A.到兩定點距離之和為常數(shù)的點的軌跡是橢圓B.到定直線cax2?和定點F(c,0)的距離之比為ac的點的軌跡是橢圓C.到定點F(-c,0)和定直線cax2??的距離之比為ac(ac0)的點的軌跡是左
2024-12-05 06:34
【總結】雙曲線的性質(一)222bac??定義圖象方程焦點的關系||MF1|-|MF2||=2a(02a|F1F2|)F(±c,0)F(0,±c)12222??byax12
2024-11-18 08:47
【總結】【成才之路】2021-2021學年高中數(shù)學拋物線的簡單性質練習北師大版選修1-1一、選擇題1.頂點在坐標原點,對稱軸為坐標軸,過點(-2,3)的拋物線方程是()A.y2=94xB.x2=43yC.y2=-94x或x2=-43yD.y2=-92x或x2=43y[答案]D[解析]
2024-11-28 19:11
【總結】江蘇省漣水縣第一中學高中數(shù)學雙曲線的幾何性質(2)教學案蘇教版選修1-1教學目標:1.了解雙曲線簡單幾何性質,如范圍、對稱性、頂點、漸近線和離心率等.2.能用雙曲線的簡單幾何性質解決一些簡單問題.教學重點:雙曲線的幾何性質及初步運用.教學難點:雙曲線的漸近線.教學過程:一復習回顧1.雙曲線的標準方程和幾何性質
2024-12-05 03:09
【總結】新課標人教版課件系列《高中數(shù)學》選修1-1《雙曲線的簡單幾何性質》教學目標?知識與技能目標?了解平面解析幾何研究的主要問題:(1)根據(jù)條件,求出表示曲線的方程;(2)通過方程,研究曲線的性質.理解雙曲線的范圍、對稱性及對稱軸,對稱中心、離心率、頂點、漸近線的概念;掌握雙曲線的標準方程、會用雙曲線的定義解決實際
2024-11-30 12:26
【總結】江蘇省建陵高級中學2021-2021學年高中數(shù)學雙曲線的幾何性質(1)導學案(無答案)蘇教版選修1-1【學習目標】1、理解雙曲線的范圍、對稱性、頂點、漸近線、離心率等幾何性質;2、理解雙曲線標準方程中ab、、c的幾何意義?!菊n前預習】1、對于雙曲線22194yx??,它的頂點坐標為_____________
2024-12-04 18:02
【總結】●教學目標、實虛半軸、焦點、離心率、漸近線方程.●教學重點雙曲線的幾何性質●教學難點雙曲線的漸近線●教學方法學導式●教具準備幻燈片、三角板●教學過程:師:上一節(jié),我們學習了雙曲
2024-12-08 01:51
【總結】第一課時?學習目標?情境設置?探索研究?反思應用?歸納總結?作業(yè)學習目標?、標準方程及其求法;?、焦距、焦點位置與方程關系;?.情境設置?橢圓的定義?把平面內(nèi)與兩個定點F1、F2的距離和等于常數(shù)(大于|F1F2|)的點軌跡叫做橢圓。這兩
2024-11-19 16:17
【總結】拋物線的簡單性質課程目標學習脈絡1.了解拋物線的軸、頂點、離心率、通徑的概念.2.掌握拋物線上的點的坐標的取值范圍,拋物線的對稱性、頂點、離心率等簡單性質.3.會用頂點及通徑的端點畫拋物線的草圖.拋物線的簡單性質標準方程y2=2px(p0)y2=-
【總結】【成才之路】2021-2021學年高中數(shù)學雙曲線及其標準方程練習北師大版選修1-1一、選擇題1.已知A(0,-5)、B(0,5),|PA|-|PB|=2a,當a=3或5時,P點的軌跡為()A.雙曲線或一條直線B.雙曲線或兩條直線C.雙曲線一支或一條直線D.雙曲線一支或一條射線[答案]
【總結】第6課時拋物線的簡單性質的應用,會利用幾何性質求拋物線的標準方程、焦點坐標、準線方程、焦半徑和通徑.,理解拋物線的焦點弦的特殊意義,結合定義得到焦點弦的公式,并利用該公式解決一些相關的問題.我們已經(jīng)學習了拋物線及拋物線的簡單幾何性質,拋物線的幾何性質應用非常廣泛,通過類比橢圓、雙曲線的幾何性質,結合拋物線的標
2024-11-19 23:17