【導(dǎo)讀】[解析]∵點在第二象限,∴設(shè)拋物線方程為y2=-2px(p>0)或x2=2p′y,∴9=4p,p=94,4=6p′,p′=23.[解析]橢圓中a2=9,b2=5,∴c2=a2-b2=4,∴c=2,∴F1,F(xiàn)2(2,0),拋。物線y2=-2px(p>0)的焦點F與F1重合,∴-p2=-2,∴p=4,故選C.又拋物線的焦點F坐標(biāo)為(1,0),由題意可知|PP1|=|AA1|+|BB1|2,|AA1|=|AF|,|BB1|=|BF|,∴|PP1|=|AF|+|BF|2=12|AB|.如圖,∵|AF|=|AA1|,|BF|=|BB1|,∴∠AA1F=∠AFA1,∠BFB1=∠FB1B.∴∠A1FO=∠AF1A,∠B1FO=∠FB1B,∴∠A1FB1=12∠AFB=90°.=-2平行于拋物線的軸知A(2,0)為焦點,故準(zhǔn)線方程為x=-2.當(dāng)a<0時,將代入y2=ax,得a=-23,故a=±23.設(shè)A,B,由根與系數(shù)的關(guān)系得y1²y2=-1,y1+y2=-1k.∴y21=-x1,y22=-x2,∴y21²y22=x1x2.由于拋物線關(guān)于x軸對稱,頂點在坐標(biāo)原點且經(jīng)過點M,可設(shè)方程為y2=2px,y0)在拋物線y2=4x上,則y20=8,|OM|=22+y20=12=23.3.已知拋物線x2=2py(p>0)的焦點為F,過F作傾。斜角為30°的直線,與拋物線交于A,B兩點,若|AF||BF|∈(0,1),則|AF||BF|=()