【導(dǎo)讀】1.函數(shù)f在x=x0處導(dǎo)數(shù)存在,若p:f′=0;q:x=。p,而由f′=0,不一定。得到x0是極值點(diǎn),故p?[解析]因?yàn)閒′=3ax2+b,①x=-3是函數(shù)y=f的極值點(diǎn);③曲線y=f在x=0處的切線斜率小于零;6.設(shè)a∈R,若函數(shù)y=ex+ax,x∈R,有大于零的極。∴ex0+a=0,且x0>0,[解析]f′=-x2+x+2=-(x-2)(x+1),上遞減,在上遞增,[解析]f=x(x-c)2=x3-2cx2+c2x,當(dāng)c=2時(shí),f′=3x2-8x+4=(x-2),故f在x=2處取得極小值,不合題意舍去;10.設(shè)y=f為三次函數(shù),且圖像關(guān)于原點(diǎn)對(duì)稱,當(dāng)x=12時(shí),f的極小值為-1,f恒成立,得ax3+bx2+cx+d=ax3-bx2+cx-d,故所求函數(shù)的解析式為f=4x3-3x.