【總結(jié)】........解析幾何中的定值定點問題(一)一、定點問題【例1】.已知橢圓:的離心率為,以原點為圓心,橢圓的短半軸長為半徑的圓與直線相切.⑴求橢圓C的方程;⑵設,、是橢圓上關于軸對稱的任意兩個不同的點,連結(jié)交橢圓于另一點,求直線的斜率的取值范圍;
2025-03-25 07:47
【總結(jié)】蘇州分公司金閶校區(qū)數(shù)學組XueDaPersonalizedEducationDevelopmentCenter專題:解析幾何中的動點軌跡問題學大蘇分教研中心周坤軌跡方程的探求是解析幾何中的基本問題之一,也是近幾年各省高考中的常見題型之一。解答這類問題,需要善于揭示問題的內(nèi)部規(guī)律及知識之間的相互聯(lián)系。本專題分成四個部分,首先從題目類型出發(fā),總結(jié)常見的幾類動點軌跡問
2025-03-24 05:55
【總結(jié)】專題——求參數(shù)取值范圍一般方法概念與用法恒成立問題是數(shù)學中常見問題,也是歷年高考的一個熱點。題型特點大多以已知一個變量的取值范圍,求另一個變量的取值范圍的形式出現(xiàn)。這樣的題型會出現(xiàn)于代數(shù)中的不等式里也會出現(xiàn)在幾何里。就??碱}型的一般題型以及解題方法,我在這里做了個小結(jié)。題型以及解題方法一,分離參數(shù)在給出的不等式中,如果能通過恒等變形分離出參數(shù),即:若恒成立,只須求出,
2025-03-24 23:27
【總結(jié)】淺談解析幾何中的“點差法”高二(七班)第一學習小組易正貴整理2022年5月解析幾何在高考中占有重要地位,一般放在試題倒數(shù)第二題,有時也成為壓軸題。在高考中,絕大多數(shù)學生只能完成第1問,第2問,因計算量大而難無法完成。在平時學習及復習過程中,要讓自己真正理解解析幾何中的最優(yōu)解法與算法,這樣在考試中才能作出正確的、最優(yōu)的解法選擇,這樣
2025-01-08 21:36
【總結(jié)】1平面解析幾何高考研究及應考策略考綱分析:(文、理相同)①在平面直角坐標系中,結(jié)合具體圖形,確定直線位置的幾何要素。②理解直線的傾斜角和斜率的概念,掌握過兩點的直線斜率的計算公式③能根據(jù)兩條直線的斜率判定這兩條直線平行或垂直④掌握確定直線位置的幾何要素,掌握直線方程的幾種形式(點斜式、兩點式及一般式),
2025-01-10 04:35
【總結(jié)】《直線和圓》常用結(jié)論1、傾斜角的定義及范圍:當直線非水平線時,:[0,л)2、直線的斜率定義和斜率公式:斜率定義:(是直線的非直角傾斜角)斜率公式:過點的直線的斜率為:.斜率的幾何意義:非豎直直線上的任一個點向右運動一個單位,縱方向的改變量.3、把垂直于直線的向量叫做直線的法向量,.已知點,則(1)與向量平行的直線的方程可設為:;(2)與向量垂直的直線的方程可
2025-08-09 16:45
【總結(jié)】解析幾何中的基本公式1、兩點間距離:若,則2、平行線間距離:若則:注意點:x,y對應項系數(shù)應相等。3、點到直線的距離:則P到l的距離為:4、直線與圓錐曲線相交的弦長公式:消y:,務必注意若l與曲線交于A
2025-06-18 01:03
【總結(jié)】x橫軸y縱軸z豎軸?定點o空間直角坐標系三個坐標軸的正方向符合右手系.即以右手握住z軸,當右手的四個手指從正向x軸以2?角度轉(zhuǎn)向正向y軸時,大拇指的指向就是z軸的正向.一、空間點的直角坐標Ⅶxyozxoy面yoz面zox面
2025-08-05 16:47
【總結(jié)】空間解析幾何第六章§6-2向量及其坐標表示法?向量概念及其加減法?向量的坐標上一張下一張向量(矢量):既有大小又有方向的量.有向線段.1M2M??a?21MM模長為1的向量。零向量:模長為0的向量0?||a?21MM||向量的模:向量
2025-07-20 07:10
【總結(jié)】8平面解析幾何內(nèi)容概述解析幾何是17世紀數(shù)學發(fā)展的重大成果之一,其本質(zhì)是用代數(shù)方法研究圖形的幾何性質(zhì),體現(xiàn)了數(shù)形結(jié)合的重要數(shù)學思想。與課程改革前相比,中學解析幾何變化不大,主體內(nèi)容仍然是:直線與方程、圓與方程、圓錐曲線與方程。只是前兩者作為必修模塊,統(tǒng)稱為平面解析幾何初步,第三者則放到選修1-1和選修2-1中。另外,還在平面解析幾何初
2024-08-24 23:35
【總結(jié)】第4章 向量代數(shù)與空間解析幾何習題解答一、計算題與證明題1.已知,,,并且.計算.解:因為,,,并且所以與同向,且與反向因此,,所以2.已知,,求.解:(1)(2)得所以3.設力作用在點,求力對點的力矩的大?。猓阂驗?所以力矩所以,力矩的大小為
2025-08-05 10:17
【總結(jié)】.WORD格式整理..一、計算題與證明題1.已知,,,并且.計算.解:因為,,,并且所以與同向,且與反向因此,,所以2.已知,,求.解:(1)(2)得所以4.已知向量與共線,且滿足,求向量
2025-08-05 15:42
【總結(jié)】1專題:對稱問題活動一:幾個常見對稱一、點關于點對稱例1.已知點A(5,8),B(4,1),試求A點關于B點的對稱點C的坐標。二、直線關于點對稱例l1:3x-y-4=0關于點P(2,-1)對稱的直線l2的方程。三、點關于直線對
2025-01-10 04:40
【總結(jié)】解析幾何中的定點和定值問題【教學目標】學會合理選擇參數(shù)(坐標、斜率等)表示動態(tài)圖形中的幾何對象,探究、證明其不變性質(zhì)(定點、定值等),體會“設而不求”、“整體代換”在簡化運算中的作用.【教學難、重點】解題思路的優(yōu)化.【教學方法】討論式【教學過程】一、基礎練習1、過直線上動點作圓的切線,則兩切點所在直線恒過一定點.此定點的坐標為_________.【答案】【解
2025-06-18 18:55
【總結(jié)】11、斜率公式2121yykxx???(111(,)Pxy、222(,)Pxy).2、直線的五種方程(熟練掌握兩點和截距式、一般式)(1)點斜式11()yykxx???(直線l過點111(,)Pxy,且斜率為k).(2)斜截式y(tǒng)kxb??(b為直線l
2024-11-01 22:07