【總結】解析幾何中的基本公式1、兩點間距離:若,則特別地:軸,則。軸,則。2、平行線間距離:若則:注意點:x,y對應項系數(shù)應相等。3、
2025-01-14 09:02
【總結】解析幾何中的最值問題一、教學目標解析幾何中的最值問題以直線或圓錐曲線作為背景,以函數(shù)和不等式等知識作為工具,具有較強的綜合性,這類問題的解決沒有固定的模式,其解法一般靈活多樣,且對于解題者有著相當高的能力要求,正基于此,這類問題近年來成為了數(shù)學高考中的難關。二、教學重點方法的靈活應用。三、教學程序1、基礎知識。探求解析幾何最值的方法有以下幾種。⑴函數(shù)法
2024-10-04 16:15
【總結】解析幾何中的定值問題1、(2014安徽高考)如圖,已知兩條拋物線,過點的三條直線、和.與和分別交于兩點,與和分別交于,與和分別交于.記的面積分別為與,求證的值為定值.證明:設直線的方程分別為.把直線與拋物線聯(lián)立求解得:,,.由三角形三頂點坐標面積公式得:,,所以=為定值.注:(1)設?ABC三頂點的坐標分別為,則;(2)原解答包含
2025-08-05 16:44
【總結】..一、直線與方程基礎:1、直線的傾斜角:αα 2、直線的斜率:;注意:傾斜角為90°的直線的斜率不存在。3、直線方程的五種形式:①點斜式:;②斜截式:;③一般式:;④截距式:;⑤兩點式:注意:各種形式的直線方程所能表示和不能表示的直線。4、兩直線平行
2025-08-05 15:43
【總結】海豚教育個性化簡案學生姓名:年級:科目:授課日期:月日上課時間:時分------時分合計:小時教學目標1.掌握兩條直線平行和垂直的條件,掌握兩條直線所成的角和點到直線的距離公式;2.能夠根據(jù)直線的方程
2025-06-22 16:55
【總結】......解析幾何總結一、直線1、直線的傾斜角:一條直線向上的方向與X軸的正方向所成的最小正角。2、范圍3、直線的斜率:當傾斜角不是時,傾斜角的正切值。4、直線的斜率公式:設,5、直
2025-04-17 13:20
【總結】解析幾何中的最值問題華東師范大學松江實驗高級中學王麗萍復習?||),,(),,(12211AByxByxA則點、點與點的距離:已知221221)()(yyxx???2211||bacbyax???????dlAbacbyaxlyxA的距離線點與直,則不能同時為、直線知
2025-07-21 17:20
【總結】解析幾何中的幾類定值問題浙江省諸暨中學邵躍才311800求定值是解析幾何中頗有難度的一類問題,由于它在解題之前不知道定值的結果,因而更增添了題目的神秘色彩。解決這類問題時,要善于運用辯證的觀點去思考分析,在動點的“變”中尋求定值的“不變”性,用特殊探索法(特殊值、特殊位置、特殊圖形等)先確定出定值,揭開神秘的面紗,這樣可將盲目的探索問題轉化為有方向有目標的一般性證明題,從而找到解
2024-10-04 17:25
【總結】七夕,古今詩人慣詠星月與悲情。吾生雖晚,世態(tài)炎涼卻已看透矣。情也成空,且作“揮手袖底風”罷。是夜,窗外風雨如晦,吾獨坐陋室,聽一曲《塵緣》,合成詩韻一首,覺放諸古今,亦獨有風韻也。乃書于紙上。畢而臥。凄然入夢。乙酉年七月初七。-----嘯之記。解析幾何中的基本公式1、兩點間距離:若,則特別地:軸,則
2025-01-14 20:51
【總結】《直線和圓》常用結論1、傾斜角的定義及范圍:當直線非水平線時,:[0,л)2、直線的斜率定義和斜率公式:斜率定義:(是直線的非直角傾斜角)斜率公式:過點的直線的斜率為:.斜率的幾何意義:非豎直直線上的任一個點向右運動一個單位,縱方向的改變量.3、把垂直于直線的向量叫做直線的法向量,.已知點,則(1)與向量平行的直線的方程可設為:;(2)與向量垂直的直線的方程可
2025-08-09 16:45
【總結】解析幾何中的基本公式1、兩點間距離:若,則2、平行線間距離:若則:注意點:x,y對應項系數(shù)應相等。3、點到直線的距離:則P到l的距離為:4、直線與圓錐曲線相交的弦長公式:消y:,務必注意若l與曲線交于A
2025-06-18 01:03
【總結】解析幾何一、選擇題1.已知兩點A(-3,),B(,-1),則直線AB的斜率是( )A. B.-C. D.-解析:斜率k==-,故選D.答案:D2.已知直線l:ax+y-2-a=0在x軸和y軸上的截距相等,則a的值是( )A.1 B.-1C.-2或-1 D.-2或1解析:①當a=0時,y=2不合題意.②a≠0,x=0時
2025-08-05 16:26
【總結】8平面解析幾何內(nèi)容概述解析幾何是17世紀數(shù)學發(fā)展的重大成果之一,其本質(zhì)是用代數(shù)方法研究圖形的幾何性質(zhì),體現(xiàn)了數(shù)形結合的重要數(shù)學思想。與課程改革前相比,中學解析幾何變化不大,主體內(nèi)容仍然是:直線與方程、圓與方程、圓錐曲線與方程。只是前兩者作為必修模塊,統(tǒng)稱為平面解析幾何初步,第三者則放到選修1-1和選修2-1中。另外,還在平面解析幾何初
2025-08-15 23:35
【總結】x橫軸y縱軸z豎軸?定點o空間直角坐標系三個坐標軸的正方向符合右手系.即以右手握住z軸,當右手的四個手指從正向x軸以2?角度轉向正向y軸時,大拇指的指向就是z軸的正向.一、空間點的直角坐標Ⅶxyozxoy面yoz面zox面
2025-08-05 16:47
【總結】空間解析幾何第六章§6-2向量及其坐標表示法?向量概念及其加減法?向量的坐標上一張下一張向量(矢量):既有大小又有方向的量.有向線段.1M2M??a?21MM模長為1的向量。零向量:模長為0的向量0?||a?21MM||向量的模:向量
2025-07-20 07:10