【總結(jié)】平面幾何中的定值問題開場白:同學(xué)們,動態(tài)幾何類問題是近幾年中考命題的熱點,題目靈活、多變,能夠全面考查同學(xué)們的綜合分析和解決問題的能力。這類問題中就有一類是定值問題,下面我們來看幾道題:【問題1】已知一等腰直角三角形的兩直角邊AB=AC=1,P是斜邊BC上的一動點,過P作PE⊥AB于E,PF⊥AC于F,則PE+PF=。方法1:特殊值法:把P點放在特殊的B點或C
2025-03-24 12:35
【總結(jié)】WORD資料可編輯專題08解鎖圓錐曲線中的定點與定值問題一、解答題1.【陜西省榆林市第二中學(xué)2018屆高三上學(xué)期期中】已知橢圓的左右焦點分別為,離心率為;.(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;(Ⅱ)證明:在軸上存在定點,使得為定值;并求出該定點的坐標(biāo).【答案】(1
2025-04-17 12:58
【總結(jié)】......專題08解鎖圓錐曲線中的定點與定值問題一、解答題1.【陜西省榆林市第二中學(xué)2018屆高三上學(xué)期期中】已知橢圓的左右焦點分別為,離心率為;.(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;(Ⅱ)證明:在軸上存在定點,使得為定
2025-04-17 13:05
【總結(jié)】圓錐曲線一、選擇題1、(2009全國卷Ⅱ文)雙曲線的漸近線與圓相切,則r= 2、(2009浙江文)已知橢圓的左焦點為,右頂點為,點在橢圓上,且軸,直線交軸于點.若,則橢圓的離心率是 3、(2009江西卷文)設(shè)和為雙曲線()的兩個焦點,若,是正三角形的三個頂點,則雙曲線的離心率為 4、(2009山東卷文)設(shè)斜率為2的直線過拋物線的
2025-04-09 06:45
【總結(jié)】WORD資料可編輯課題名稱:《圓錐曲線中的定點與定值問題》教學(xué)內(nèi)容分析圓錐曲線在高考中占有重要的位置,,與其他章節(jié)知識交叉的綜合性,決定了圓錐曲線在高考中地位的特殊性.定點、定值問題與運動變化密切相關(guān),這類問題常與函數(shù),不等式,向量等其他章節(jié)知識綜合,是學(xué)習(xí)圓錐曲
2025-03-25 00:03
【總結(jié)】......定點、定直線、定值專題1、已知橢圓的中心在坐標(biāo)原點,焦點在軸上,橢圓上的點到焦點距離的最大值為,最小值為.(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;(Ⅱ)若直線與橢圓相交于,兩點(不是左右頂點),且以為直徑的圓過橢圓的右頂
【總結(jié)】幾何定值和極值1.幾何定值問題(1)定量問題:解決定量問題的關(guān)鍵在探求定值,一旦定值被找出,就轉(zhuǎn)化為熟悉的幾何證明題了。探求定值的方法一般有運動法、特殊值法及計算法。(2)定形問題:定形問題是指定直線、定角、定向等問題。在直角坐標(biāo)平面上,定點可對應(yīng)于有序數(shù)對,定向直線可以看作斜率一定的直線,實質(zhì)上這些問題是軌跡問題。2.幾何極值問題:最常見的
2025-03-24 12:12
【總結(jié)】......橢圓一、直線與橢圓問題的常規(guī)解題方法:;(提醒:①設(shè)直線時分斜率存在與不存在;②設(shè)為y=kx+b與x=my+n的區(qū)別);(提醒:之所以要設(shè)是因為不去求出它,即“設(shè)而不求”);
2025-03-25 04:50
【總結(jié)】1專題:對稱問題活動一:幾個常見對稱一、點關(guān)于點對稱例1.已知點A(5,8),B(4,1),試求A點關(guān)于B點的對稱點C的坐標(biāo)。二、直線關(guān)于點對稱例l1:3x-y-4=0關(guān)于點P(2,-1)對稱的直線l2的方程。三、點關(guān)于直線對
2025-01-10 04:40
【總結(jié)】直線測試題一.選擇題(每小題5分共40分)1.下列四個命題中的真命題是()(x0,y0)的直線都可以用方程y-y0=k(x-x0)表示;(x1,y1)、P2(x2,y2)的直線都可以用方程(y-y1)·(x2-x1)=(x-x1)(y2-y1)表示;;(0,b)的直線都可以用方程y=kx+b表示。【答案】B【解析】A中過點P0(x0,y0
2025-06-22 16:55
【總結(jié)】.WORD格式整理..一、計算題與證明題1.已知,,,并且.計算.解:因為,,,并且所以與同向,且與反向因此,,所以2.已知,,求.解:(1)(2)得所以4.已知向量與共線,且滿足,求向量
2025-08-05 15:42
【總結(jié)】專題08解鎖圓錐曲線中的定點與定值問題一、解答題1.【陜西省榆林市第二中學(xué)2018屆高三上學(xué)期期中】已知橢圓的左右焦點分別為,離心率為;.(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;(Ⅱ)證明:在軸上存在定點,使得為定值;并求出該定點的坐標(biāo).【答案】(1)(2)【解析】試題分析:(Ⅰ)設(shè)圓過橢圓的上、下、右三個頂點,可求得,再根據(jù)橢圓的離心率求得,可得橢圓的方程;(Ⅱ)設(shè)直線的方程為,
2025-04-17 12:43
【總結(jié)】解析幾何1.(21)(本小題滿分13分)設(shè),點的坐標(biāo)為(1,1),點在拋物線上運動,點滿足,經(jīng)過點與軸垂直的直線交拋物線于點,點滿足,求點的軌跡方程。(21)(本小題滿分13分)本題考查直線和拋物線的方程,平面向量的概念,性質(zhì)與運算,動點的軌跡方程等基本知識,考查靈活運用知識探究問題和解決問題的能力,全面考核綜合數(shù)學(xué)素養(yǎng). 解:由知Q,M,P三
2025-08-05 16:39
【總結(jié)】解析幾何中的基本公式1、兩點間距離:若,則特別地:軸,則。軸,則。2、平行線間距離:若則:注意點:x,y對應(yīng)項系數(shù)應(yīng)相等。3、
2025-04-17 12:52
【總結(jié)】相關(guān)知識點:含義含有可變參數(shù)的曲線系所經(jīng)過的點中不隨參數(shù)變化的某個點或某幾個點定點解法把曲線系方程按照參數(shù)進(jìn)行集項,使得方程對任意參數(shù)恒成立的方程組的解即為曲線系恒過的定點含義不隨其他量的變化而發(fā)生數(shù)值變化的量定值解法建立這個量關(guān)于其他量的關(guān)系式,最后的結(jié)果與其他變化的量無關(guān)定點問
2025-08-05 03:30