【總結】......橢圓一、直線與橢圓問題的常規(guī)解題方法:;(提醒:①設直線時分斜率存在與不存在;②設為y=kx+b與x=my+n的區(qū)別);(提醒:之所以要設是因為不去求出它,即“設而不求”);
2025-03-25 04:50
【總結】成都市中考壓軸題(二次函數(shù))精選【例一】.如圖,拋物線y=ax2+c(a≠0)經過C(2,0),D(0,﹣1)兩點,并與直線y=kx交于A、B兩點,直線l過點E(0,﹣2)且平行于x軸,過A、B兩點分別作直線l的垂線,垂足分別為點M、N.(1)求此拋物線的解析式;(2)求證:AO=AM;(3)探究:①當k=0時,直線y=kx與x軸重合,求出此時的值;②試說明無論k取何值,
2025-03-24 06:27
【總結】精銳教育學科教師輔導講義學員編號:年級:高二課時數(shù):學員姓名:張欣蕾輔導科目:數(shù)學學科教師:李欣授課類型T導數(shù)與函數(shù)極值與最值CT
2025-05-16 08:26
【總結】初中幾何中線段和(差)的最值問題一、兩條線段和的最小值。基本圖形解析:一)、已知兩個定點:1、在一條直線m上,求一點P,使PA+PB最??;(1)點A、B在直線m兩側:(2)點A、B在直線同側:2、在直線m、n上分別找兩點P、Q,使PA+PQ+QB最小。(1)兩個點都在直線外側:
2025-03-24 12:33
【總結】圓錐曲線專題——定點、定值問題定點問題是常見的出題形式,化解這類問題的關鍵就是引進變的參數(shù)表示直線方程、數(shù)量積、比例關系等,根據(jù)等式的恒成立、數(shù)式變換等尋找不受參數(shù)影響的量。直線過定點問題通法,是設出直線方程,通過韋達定理和已知條件找出k和m的一次函數(shù)關系式,代入直線方程即可。技巧在于:設哪一條直線?如何轉化題目條件?圓錐曲線是一種很有趣的載體,自身存在很多性質,這些性質往往成為出題老師
2025-08-05 05:10
【總結】導數(shù)與函數(shù)的單調性、極值、最值適用學科高中數(shù)學適用年級高中三年級適用區(qū)域通用課時時長(分鐘)60知識點函數(shù)的單調性函數(shù)的極值函數(shù)的最值教學目標掌握函數(shù)的單調性求法,會求函數(shù)的函數(shù)的極值,會求解最值問題,教學重點會利用導數(shù)求解函數(shù)的單調性,會求解函數(shù)的最值。教學難點熟練掌握函數(shù)的單調性、極值、最值的求法,以及分類討論思想的應用
2025-07-26 05:39
【總結】......專題08解鎖圓錐曲線中的定點與定值問題一、解答題1.【陜西省榆林市第二中學2018屆高三上學期期中】已知橢圓的左右焦點分別為,離心率為;.(Ⅰ)求橢圓的標準方程;(Ⅱ)證明:在軸上存在定點,使得為定
2025-04-17 13:05
【總結】導數(shù)與單調性極值最基礎值習題 一.選擇題1.可導函數(shù)y=f(x)在某一點的導數(shù)值為0是該函數(shù)在這點取極值的( )A.充分條件 B.必要條件C.充要條件 D.必要非充分條件2.函數(shù)y=1+3x﹣x3有( ?。〢.極小值﹣1,極大值3 B.極小值﹣2,極大值3C.極小值﹣1,極大值1 D.極小值﹣2,極大值23.函數(shù)f(x)=x3+ax2﹣3x﹣9,已知f
2025-08-05 05:49
【總結】導數(shù)單調性、極值、最值教學目標:掌握運用導數(shù)求解函數(shù)單調性的步驟與方法重點難點:能夠判定極值點,并能求解閉區(qū)間上的最值問題利用導數(shù)研究函數(shù)的極值、最值:(1)求導數(shù);(2)解方程;(3)使不等式成立的區(qū)間就是遞增區(qū)間,使成立的區(qū)間就是遞減區(qū)間。,右側____0,那么是的極大值;如果在根附近的左側____0,右側____0,那么是的極小值典型例題:
【總結】題型三極值最值型極大值極小值⑴在包含x0的一個區(qū)間(a,b)內,函數(shù)y=f(x)在任何一點的函數(shù)值都小于x0點的函數(shù)值,稱點x0為函數(shù)y=f(x)的極大值點,其函數(shù)值f(x0)為函數(shù)的極大值;⑵在包含x0的一個區(qū)間(a,b)內,函數(shù)y=f(x)在任何一點的函數(shù)值都大于x0點的函數(shù)值,稱點x0為函數(shù)y=f(x)的極小值點,其函數(shù)值f(x0)為函數(shù)的極小值;⑶極大值
2025-07-26 14:27
【總結】....導數(shù)與單調性極值最基礎值習題 一.選擇題1.可導函數(shù)y=f(x)在某一點的導數(shù)值為0是該函數(shù)在這點取極值的( ?。〢.充分條件 B.必要條件C.充要條件 D.必要非充分條件2.函數(shù)y=1+3x﹣x3有( )A.極小值﹣1,極大值3 B.極小值﹣2,極
2025-03-25 00:40
【總結】解析幾何中的最值問題一、教學目標解析幾何中的最值問題以直線或圓錐曲線作為背景,以函數(shù)和不等式等知識作為工具,具有較強的綜合性,這類問題的解決沒有固定的模式,其解法一般靈活多樣,且對于解題者有著相當高的能力要求,正基于此,這類問題近年來成為了數(shù)學高考中的難關。二、教學重點方法的靈活應用。三、教學程序1、基礎知識。探求解析幾何最值的方法有以下幾種。⑴函數(shù)法
2024-10-04 16:15
【總結】幾何最值問題一.選擇題(共6小題)1.(2015?孝感一模)如圖,已知等邊△ABC的邊長為6,點D為AC的中點,點E為BC的中點,點P為BD上一點,則PE+PC的最小值為( ?。.3B.3C.2D.3考點:軸對稱-最短路線問題.菁優(yōu)網版權所有分析:由題意可知點A、點C關于BD對稱,連接AE交BD于點P,由對稱的性質可得,
2025-06-23 18:44
【總結】2014年幾何圖形中的最值問題谷瑞林幾何圖形中的最值問題引言:最值問題可以分為最大值和最小值。在初中包含三個方面的問題::①二次函數(shù)有最大值和最小值;②一次函數(shù)中有取值范圍時有最大值和最小值。:①如x≤7,最大值是7;②如x≥5,最小值是5.:①兩點之間線段線段最短。②直線外一點向直線上任一點連線中垂線段最短,③在三角形中,兩邊之和大于第三邊,兩邊之差小于第三邊。一、
2025-03-24 12:12
【總結】精品資源第04講函數(shù)的極值與最值(一)知識歸納:1.極值:①定義:設函數(shù)f(x)在x0及附近有定義,如果對x0附近的所有點都有1)的一個極大值;2)的一個極小值.②函數(shù)f(x)的極值只可能在的點x0處(但必須有x0處左、右的導數(shù)值異號)或不可導點x0處取得;若f(x0)是函數(shù)的一個極值,則f(x)在點x0處的圖象呈山峰狀(或山谷狀).2.最值
2025-06-29 15:33