【總結(jié)】初中幾何中線段和(差)的最值問題一、兩條線段和的最小值?;緢D形解析:一)、已知兩個(gè)定點(diǎn):1、在一條直線m上,求一點(diǎn)P,使PA+PB最?。唬?)點(diǎn)A、B在直線m兩側(cè):(2)點(diǎn)A、B在直線同側(cè):2、在直線m、n上分別找兩點(diǎn)P、Q,使PA+PQ+QB最小。(1)兩個(gè)點(diǎn)都在直線外側(cè):
2025-03-24 12:33
【總結(jié)】班級(jí)姓名2018屆初三數(shù)學(xué)培優(yōu)材料(一)函數(shù)實(shí)際應(yīng)用專題(一)例題1小華的爸爸在國(guó)際商貿(mào)城開專賣店專銷某種品牌的計(jì)算器,進(jìn)價(jià)12元∕只,售價(jià)20元∕只.為了促銷,專賣店決定凡是買10只以上的,每多買一只,,但是最低價(jià)為16元∕只.(1)顧客一次至少買多少只,才能以最低價(jià)購(gòu)買?(2)寫出當(dāng)一次購(gòu)買x只時(shí)(x>10),利潤(rùn)y
2025-06-23 13:54
【總結(jié)】中考數(shù)學(xué)幾何最值問題解法在平面幾何的動(dòng)態(tài)問題中,當(dāng)某幾何元素在給定條件變動(dòng)時(shí),求某幾何量(如線段的長(zhǎng)度、圖形的周長(zhǎng)或面積、角的度數(shù)以及它們的和與差)的最大值或最小值問題,稱為最值問題。解決平面幾何最值問題的常用的方法有:(1)應(yīng)用兩點(diǎn)間線段最短的公理(含應(yīng)用三角形的三邊關(guān)系)求最值;(2)應(yīng)用垂線段最短的性質(zhì)求最值;(3)應(yīng)用軸對(duì)稱的性質(zhì)求最值;(4)應(yīng)用二次函數(shù)求最值;(5)應(yīng)用其它知
2025-04-04 03:00
【總結(jié)】 2018中考數(shù)學(xué)滿分沖刺第10講依據(jù)特征構(gòu)造——最值問題(含答案) 第10講、依據(jù)特征構(gòu)造——最值問題(講義) ,拋物線y=-x2+bx+c與直線AB交于A(-4,-4),B(0,4...
2024-12-05 22:02
【總結(jié)】27幾何最值與勾股定理(1)常見經(jīng)典幾何最值模型1、如圖,點(diǎn)A和點(diǎn)B是直線L上的兩定點(diǎn),,且,,點(diǎn)P為直線L上的動(dòng)點(diǎn)(1)求的最小值(2)求的最大值2、已知在平面直角坐標(biāo)系中,,若為軸上兩動(dòng)點(diǎn)(點(diǎn)在點(diǎn)右側(cè)),且,求四邊形周長(zhǎng)的最小值.
2025-06-19 07:40
【總結(jié)】......授課教案學(xué)員姓名:________________學(xué)員年級(jí):________________授課教師:_________________所授科目:_________上
2025-06-19 05:19
【總結(jié)】最值問題“最值”問題大都?xì)w于兩類基本模型:Ⅰ、歸于函數(shù)模型:即利用一次函數(shù)的增減性和二次函數(shù)的對(duì)稱性及增減性,確定某范圍內(nèi)函數(shù)的最大或最小值Ⅱ、歸于幾何模型,這類模型又分為兩種情況:(1)歸于“兩點(diǎn)之間的連線中,線段最短”。凡屬于求“變動(dòng)的兩線段之和的最小值”時(shí),大都應(yīng)用這一模型。(2)歸于“三角形兩邊之差小于第三邊”凡屬于求“變動(dòng)的兩線段之差的最大值”時(shí),大
2025-04-04 03:48
【總結(jié)】隱圓及幾何最值訓(xùn)練題一、利用“直徑是最長(zhǎng)的弦”求最值,在等腰Rt△ABC中,∠C=90°,AC=BC=4,D是AB的中點(diǎn),點(diǎn)E在AB邊上運(yùn)動(dòng)(點(diǎn)E不與點(diǎn)A重合),過A、D、E三點(diǎn)作⊙O,⊙O交AC于另一點(diǎn)F,在此運(yùn)動(dòng)變化的過程中,線段EF長(zhǎng)度的最小值為().,在△ABC中,∠ABC=90°,AB=6,BC=8,D為A
2025-03-26 05:12
【總結(jié)】專題 最值問題【考點(diǎn)聚焦】考點(diǎn)1:向量的概念、向量的加法和減法、向量的坐標(biāo)運(yùn)算、平面向量的數(shù)量積.考點(diǎn)2:解斜三角形.考點(diǎn)3:線段的定比分點(diǎn)、平移.考點(diǎn)4:向量在平面解析幾何、三角、復(fù)數(shù)中的運(yùn)用.考點(diǎn)5:向量在物理學(xué)中的運(yùn)用.【自我檢測(cè)】1、求函數(shù)最值的方法:配方法,單調(diào)性法,均值不等式法,導(dǎo)數(shù)法,判別式法,三角函數(shù)有界性,圖象法, 2、求幾類重要函數(shù)
2025-08-04 10:11
【總結(jié)】求二次函數(shù)的最值【例1】當(dāng)時(shí),求函數(shù)的最大值和最小值.分析:作出函數(shù)在所給范圍的及其對(duì)稱軸的草圖,觀察圖象的最高點(diǎn)和最低點(diǎn),由此得到函數(shù)的最大值、最小值及函數(shù)取到最值時(shí)相應(yīng)自變量的值.解:作出函數(shù)的圖象.當(dāng)時(shí),,當(dāng)時(shí),.【例2】當(dāng)時(shí),求函數(shù)的最大值和最小值.解:作出函數(shù)的圖象.當(dāng)時(shí),,當(dāng)時(shí),.由上述兩例可以看到,二次函數(shù)在自變量的給定范圍內(nèi),
2025-06-20 01:33
【總結(jié)】中考數(shù)學(xué)幾何最值問題解法在平面幾何的動(dòng)態(tài)問題中,當(dāng)某幾何元素在給定條件變動(dòng)時(shí),求某幾何量(如線段的長(zhǎng)度、圖形的周長(zhǎng)或面積、角的度數(shù)以及它們的和與差)的最大值或最小值問題,稱為最值問題。解決平面幾何最值問題的常用的方法有:(1)應(yīng)用兩點(diǎn)間線段最短的公理(含應(yīng)用三角形的三邊關(guān)系)求最值;(2)應(yīng)用垂線段最短的性質(zhì)求最值;(3)應(yīng)用軸對(duì)稱的性質(zhì)求最值;(4)應(yīng)用二次函數(shù)求最值;(5)應(yīng)用其它
【總結(jié)】專業(yè)整理分享授課教案學(xué)員姓名:________________學(xué)員年級(jí):________________授課教師:_________________所授科目:_________上課時(shí)間:______年____月____日(~
2025-06-19 05:06
【總結(jié)】幾何定值和極值1.幾何定值問題(1)定量問題:解決定量問題的關(guān)鍵在探求定值,一旦定值被找出,就轉(zhuǎn)化為熟悉的幾何證明題了。探求定值的方法一般有運(yùn)動(dòng)法、特殊值法及計(jì)算法。(2)定形問題:定形問題是指定直線、定角、定向等問題。在直角坐標(biāo)平面上,定點(diǎn)可對(duì)應(yīng)于有序數(shù)對(duì),定向直線可以看作斜率一定的直線,實(shí)質(zhì)上這些問題是軌跡問題。2.幾何極值問題:最常見的
2025-03-24 12:12
【總結(jié)】1ByCxAODBOCA與圓有關(guān)的最值(取值范圍)問題引例1:在坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(3,0),點(diǎn)B為y軸正半軸上的一點(diǎn),點(diǎn)C是第一象限內(nèi)一點(diǎn),且AC=2.設(shè)tan∠BOC=m,則m的取值范圍是_________.引例2:如圖,在邊長(zhǎng)為1的等邊△OAB中,以邊
2025-01-09 23:41
【總結(jié)】......橢圓中的最值問題與定點(diǎn)、定值問題解決與橢圓有關(guān)的最值問題的常用方法(1)利用定義轉(zhuǎn)化為幾何問題處理;(2)利用數(shù)形結(jié)合,挖掘數(shù)學(xué)表達(dá)式的幾何特征進(jìn)而求解;(3)利用函數(shù)最值得探求方法,將其轉(zhuǎn)化為區(qū)間上的二次函數(shù)
2025-03-25 04:50