【總結(jié)】初中幾何中線段和(差)的最值問題一、兩條線段和的最小值?;緢D形解析:一)、已知兩個定點:1、在一條直線m上,求一點P,使PA+PB最??;(1)點A、B在直線m兩側(cè):(2)點A、B在直線同側(cè):2、在直線m、n上分別找兩點P、Q,使PA+PQ+QB最小。(1)兩個點都在直線外側(cè):
2025-03-24 12:33
【總結(jié)】班級姓名2018屆初三數(shù)學培優(yōu)材料(一)函數(shù)實際應用專題(一)例題1小華的爸爸在國際商貿(mào)城開專賣店專銷某種品牌的計算器,進價12元∕只,售價20元∕只.為了促銷,專賣店決定凡是買10只以上的,每多買一只,,但是最低價為16元∕只.(1)顧客一次至少買多少只,才能以最低價購買?(2)寫出當一次購買x只時(x>10),利潤y
2025-06-23 13:54
【總結(jié)】中考數(shù)學幾何最值問題解法在平面幾何的動態(tài)問題中,當某幾何元素在給定條件變動時,求某幾何量(如線段的長度、圖形的周長或面積、角的度數(shù)以及它們的和與差)的最大值或最小值問題,稱為最值問題。解決平面幾何最值問題的常用的方法有:(1)應用兩點間線段最短的公理(含應用三角形的三邊關(guān)系)求最值;(2)應用垂線段最短的性質(zhì)求最值;(3)應用軸對稱的性質(zhì)求最值;(4)應用二次函數(shù)求最值;(5)應用其它知
2025-04-04 03:00
【總結(jié)】 2018中考數(shù)學滿分沖刺第10講依據(jù)特征構(gòu)造——最值問題(含答案) 第10講、依據(jù)特征構(gòu)造——最值問題(講義) ,拋物線y=-x2+bx+c與直線AB交于A(-4,-4),B(0,4...
2024-12-05 22:02
【總結(jié)】27幾何最值與勾股定理(1)常見經(jīng)典幾何最值模型1、如圖,點A和點B是直線L上的兩定點,,且,,點P為直線L上的動點(1)求的最小值(2)求的最大值2、已知在平面直角坐標系中,,若為軸上兩動點(點在點右側(cè)),且,求四邊形周長的最小值.
2025-06-19 07:40
【總結(jié)】......授課教案學員姓名:________________學員年級:________________授課教師:_________________所授科目:_________上
2025-06-19 05:19
【總結(jié)】最值問題“最值”問題大都歸于兩類基本模型:Ⅰ、歸于函數(shù)模型:即利用一次函數(shù)的增減性和二次函數(shù)的對稱性及增減性,確定某范圍內(nèi)函數(shù)的最大或最小值Ⅱ、歸于幾何模型,這類模型又分為兩種情況:(1)歸于“兩點之間的連線中,線段最短”。凡屬于求“變動的兩線段之和的最小值”時,大都應用這一模型。(2)歸于“三角形兩邊之差小于第三邊”凡屬于求“變動的兩線段之差的最大值”時,大
2025-04-04 03:48
【總結(jié)】隱圓及幾何最值訓練題一、利用“直徑是最長的弦”求最值,在等腰Rt△ABC中,∠C=90°,AC=BC=4,D是AB的中點,點E在AB邊上運動(點E不與點A重合),過A、D、E三點作⊙O,⊙O交AC于另一點F,在此運動變化的過程中,線段EF長度的最小值為().,在△ABC中,∠ABC=90°,AB=6,BC=8,D為A
2025-03-26 05:12
【總結(jié)】專題 最值問題【考點聚焦】考點1:向量的概念、向量的加法和減法、向量的坐標運算、平面向量的數(shù)量積.考點2:解斜三角形.考點3:線段的定比分點、平移.考點4:向量在平面解析幾何、三角、復數(shù)中的運用.考點5:向量在物理學中的運用.【自我檢測】1、求函數(shù)最值的方法:配方法,單調(diào)性法,均值不等式法,導數(shù)法,判別式法,三角函數(shù)有界性,圖象法, 2、求幾類重要函數(shù)
2025-08-04 10:11
【總結(jié)】求二次函數(shù)的最值【例1】當時,求函數(shù)的最大值和最小值.分析:作出函數(shù)在所給范圍的及其對稱軸的草圖,觀察圖象的最高點和最低點,由此得到函數(shù)的最大值、最小值及函數(shù)取到最值時相應自變量的值.解:作出函數(shù)的圖象.當時,,當時,.【例2】當時,求函數(shù)的最大值和最小值.解:作出函數(shù)的圖象.當時,,當時,.由上述兩例可以看到,二次函數(shù)在自變量的給定范圍內(nèi),
2025-06-20 01:33
【總結(jié)】中考數(shù)學幾何最值問題解法在平面幾何的動態(tài)問題中,當某幾何元素在給定條件變動時,求某幾何量(如線段的長度、圖形的周長或面積、角的度數(shù)以及它們的和與差)的最大值或最小值問題,稱為最值問題。解決平面幾何最值問題的常用的方法有:(1)應用兩點間線段最短的公理(含應用三角形的三邊關(guān)系)求最值;(2)應用垂線段最短的性質(zhì)求最值;(3)應用軸對稱的性質(zhì)求最值;(4)應用二次函數(shù)求最值;(5)應用其它
【總結(jié)】專業(yè)整理分享授課教案學員姓名:________________學員年級:________________授課教師:_________________所授科目:_________上課時間:______年____月____日(~
2025-06-19 05:06
【總結(jié)】幾何定值和極值1.幾何定值問題(1)定量問題:解決定量問題的關(guān)鍵在探求定值,一旦定值被找出,就轉(zhuǎn)化為熟悉的幾何證明題了。探求定值的方法一般有運動法、特殊值法及計算法。(2)定形問題:定形問題是指定直線、定角、定向等問題。在直角坐標平面上,定點可對應于有序數(shù)對,定向直線可以看作斜率一定的直線,實質(zhì)上這些問題是軌跡問題。2.幾何極值問題:最常見的
2025-03-24 12:12
【總結(jié)】1ByCxAODBOCA與圓有關(guān)的最值(取值范圍)問題引例1:在坐標系中,點A的坐標為(3,0),點B為y軸正半軸上的一點,點C是第一象限內(nèi)一點,且AC=2.設tan∠BOC=m,則m的取值范圍是_________.引例2:如圖,在邊長為1的等邊△OAB中,以邊
2025-01-09 23:41
【總結(jié)】......橢圓中的最值問題與定點、定值問題解決與橢圓有關(guān)的最值問題的常用方法(1)利用定義轉(zhuǎn)化為幾何問題處理;(2)利用數(shù)形結(jié)合,挖掘數(shù)學表達式的幾何特征進而求解;(3)利用函數(shù)最值得探求方法,將其轉(zhuǎn)化為區(qū)間上的二次函數(shù)
2025-03-25 04:50