【總結(jié)】直線與圓二、弦長公式:直線與二次曲線相交所得的弦長1直線具有斜率,直線與二次曲線的兩個交點(diǎn)坐標(biāo)分別為,則它的弦長注:實(shí)質(zhì)上是由兩點(diǎn)間距離公式推導(dǎo)出來的,只是用了交點(diǎn)坐標(biāo)設(shè)而不求的技巧而已(因?yàn)椋\(yùn)用韋達(dá)定理來進(jìn)行計算.2當(dāng)直線斜率不存在是,則.三、過兩圓C1:x2+y2+D1x+E1y+F1=0和C2:x2+y2+D2x+E2y+F2=
2025-03-25 06:29
【總結(jié)】......圓錐曲線中的最值問題一、圓錐曲線定義、性質(zhì)1.(文)已知F是橢圓+=1的一個焦點(diǎn),AB為過其中心的一條弦,則△ABF的面積最大值為( )A.6B.15C.2
2025-03-25 00:03
【總結(jié)】2014年幾何圖形中的最值問題谷瑞林幾何圖形中的最值問題引言:最值問題可以分為最大值和最小值。在初中包含三個方面的問題::①二次函數(shù)有最大值和最小值;②一次函數(shù)中有取值范圍時有最大值和最小值。:①如x≤7,最大值是7;②如x≥5,最小值是5.:①兩點(diǎn)之間線段線段最短。②直線外一點(diǎn)向直線上任一點(diǎn)連線中垂線段最短,③在三角形中,兩邊之和大于第三邊,兩邊之差小于第三邊。一、
2025-03-24 12:12
【總結(jié)】圓錐曲線中的最值問題復(fù)習(xí)1、橢圓及雙曲線第一定義;2、橢圓及雙曲線第二定義;3、拋物線定義例1、已知橢圓171622??yx及點(diǎn)M(1,3),F1、F2分別為橢圓的左、右焦點(diǎn),A為橢圓上的任意一點(diǎn),求:①∣AM│+∣AF2│
2025-08-16 02:08
2025-08-04 15:01
【總結(jié)】直線中的最值問題基礎(chǔ)卷一.選擇題:1.設(shè)-π≤α≤π,點(diǎn)P(1,1)到直線xcosα+ysinα=2的最大距離是(A)2-(B)2+(C)2(D)2.點(diǎn)P為直線x-y+4=0上任意一點(diǎn),O為原點(diǎn),則|OP|的最小值為(A)(B)(C)2(D)23.已知兩點(diǎn)P(cosα,sinα),Q(cosβ,sinβ),則|PQ|的最大值
【總結(jié)】一、輕松練一練74cm的鐵絲剪成兩段,用長為38cm一段彎成一個矩形,另一段彎成一個腰長為13cm的等腰三角形,如果矩形面積與等腰三角形面積相等,求矩形的邊長。解:設(shè)矩形的長為xcm,則寬為(19-x)cm由題意有:等腰三角形底邊長為10cm,底邊上的高為12cmx(19-x)=×
2025-11-03 03:27
【總結(jié)】圓錐曲線中的最值問題制作:黃石市實(shí)驗(yàn)高中成冬英想一想OyxOyx換元法判別式法Q(3,4)P利用幾何意義:看成PQ的斜率Oyx變題OBAyxCDOyx
2025-10-31 23:29
【總結(jié)】求圓錐曲線的最值常用哪些方法?圓錐曲線中的最值問題(一)想一想OyxOyx換元法判別式法Q(3,4)P利用幾何意義:看成PQ的斜率圓錐曲線中的最值問題(一)Oyx變題OBAyxCD
2025-10-31 08:49
【總結(jié)】精品資源例析三角函數(shù)最值問題的若干解法三角函數(shù)是高中數(shù)學(xué)中重要的內(nèi)容之一,而最值問題的求解是三角函數(shù)的重要題型,在近幾年的高考題中經(jīng)常出現(xiàn),極具靈活性?,F(xiàn)舉例說明解決這種題型的若干方法,供大家參考。1.利用配方法例1.求函數(shù)的最值。解:將函數(shù)化為,配方得當(dāng)當(dāng)例2.若,那么函數(shù)的最小值是(
2025-03-24 07:06
【總結(jié)】專題30圓錐曲線中的最值問題【考情分析】與圓錐曲線有關(guān)的最值和范圍問題,因其考查的知識容量大、分析能力要求高、區(qū)分度高而成為高考命題者青睞的一個熱點(diǎn)。江蘇高考試題結(jié)構(gòu)平穩(wěn),題量均勻.每份試卷解析幾何基本上是1道小題和1道大題,平均分值19分,實(shí)際情況與理論權(quán)重基本吻合;涉及知識點(diǎn)廣.雖然解析幾何的題量不多,分值僅占總分的13%,但涉及到的知識點(diǎn)分布較廣,覆蓋面較大;注重與其他
2025-03-25 01:53
【總結(jié)】中考數(shù)學(xué)壓軸題解題策略線段和差最值的存在性問題解題策略2015年9月13日星期日專題攻略兩條動線段的和的最小值問題,常見的是典型的“牛喝水”問題,關(guān)鍵是指出一條對稱軸“河流”(如圖1).三條動線段的和的最小值問題,常見的是典型的“臺球兩次碰壁”或“光的兩次反射”問題,關(guān)鍵是指出兩條對稱軸“反射鏡面”(如圖2).兩條線段差的最大值問題,一般根據(jù)三角形的兩
2025-03-25 07:09
【總結(jié)】1幾何中的最值問題(作業(yè))1.如圖,在梯形ABCD中,AB∥CD,∠BAD=90°,AB=6,對角線AC平分∠BAD,點(diǎn)E在AB上,且AE=2(AE<AD),點(diǎn)P是AC上的動點(diǎn),則PE+PB的最小值是__________.PEDCBACDQPBA
2025-08-01 20:49
【總結(jié)】平面向量中的最值問題淺析耿素蘭山西平定二中(045200)平面向量中的最值問題多以考查向量的基本概念、基本運(yùn)算和性質(zhì)為主,解決此類問題要注意正確運(yùn)用相關(guān)知識,合理轉(zhuǎn)化。一、利用函數(shù)思想方法求解例1、給定兩個長度為1的平面向量和,,,則的最大值是________.圖11分析:尋求刻畫點(diǎn)變化的變量,建立目標(biāo)與此變量的函數(shù)關(guān)系是解決最值問題的常用途徑。解
2025-03-25 01:21
2025-08-16 00:56