【總結】最值問題“最值”問題大都歸于兩類基本模型:Ⅰ、歸于函數模型:即利用一次函數的增減性和二次函數的對稱性及增減性,確定某范圍內函數的最大或最小值Ⅱ、歸于幾何模型,這類模型又分為兩種情況:(1)歸于“兩點之間的連線中,線段最短”。凡屬于求“變動的兩線段之和的最小值”時,大都應用這一模型。(2)歸于“三角形兩邊之差小于第三邊”凡屬于求“變動的兩線段之差的最大值”時,大
2025-04-04 03:48
【總結】隱圓及幾何最值訓練題一、利用“直徑是最長的弦”求最值,在等腰Rt△ABC中,∠C=90°,AC=BC=4,D是AB的中點,點E在AB邊上運動(點E不與點A重合),過A、D、E三點作⊙O,⊙O交AC于另一點F,在此運動變化的過程中,線段EF長度的最小值為().,在△ABC中,∠ABC=90°,AB=6,BC=8,D為A
2025-03-26 05:12
【總結】專題 最值問題【考點聚焦】考點1:向量的概念、向量的加法和減法、向量的坐標運算、平面向量的數量積.考點2:解斜三角形.考點3:線段的定比分點、平移.考點4:向量在平面解析幾何、三角、復數中的運用.考點5:向量在物理學中的運用.【自我檢測】1、求函數最值的方法:配方法,單調性法,均值不等式法,導數法,判別式法,三角函數有界性,圖象法, 2、求幾類重要函數
2025-08-04 10:11
【總結】求二次函數的最值【例1】當時,求函數的最大值和最小值.分析:作出函數在所給范圍的及其對稱軸的草圖,觀察圖象的最高點和最低點,由此得到函數的最大值、最小值及函數取到最值時相應自變量的值.解:作出函數的圖象.當時,,當時,.【例2】當時,求函數的最大值和最小值.解:作出函數的圖象.當時,,當時,.由上述兩例可以看到,二次函數在自變量的給定范圍內,
2025-06-20 01:33
【總結】中考數學幾何最值問題解法在平面幾何的動態(tài)問題中,當某幾何元素在給定條件變動時,求某幾何量(如線段的長度、圖形的周長或面積、角的度數以及它們的和與差)的最大值或最小值問題,稱為最值問題。解決平面幾何最值問題的常用的方法有:(1)應用兩點間線段最短的公理(含應用三角形的三邊關系)求最值;(2)應用垂線段最短的性質求最值;(3)應用軸對稱的性質求最值;(4)應用二次函數求最值;(5)應用其它
2025-04-04 03:00
【總結】專業(yè)整理分享授課教案學員姓名:________________學員年級:________________授課教師:_________________所授科目:_________上課時間:______年____月____日(~
2025-06-19 05:06
【總結】幾何定值和極值1.幾何定值問題(1)定量問題:解決定量問題的關鍵在探求定值,一旦定值被找出,就轉化為熟悉的幾何證明題了。探求定值的方法一般有運動法、特殊值法及計算法。(2)定形問題:定形問題是指定直線、定角、定向等問題。在直角坐標平面上,定點可對應于有序數對,定向直線可以看作斜率一定的直線,實質上這些問題是軌跡問題。2.幾何極值問題:最常見的
2025-03-24 12:12
【總結】1ByCxAODBOCA與圓有關的最值(取值范圍)問題引例1:在坐標系中,點A的坐標為(3,0),點B為y軸正半軸上的一點,點C是第一象限內一點,且AC=2.設tan∠BOC=m,則m的取值范圍是_________.引例2:如圖,在邊長為1的等邊△OAB中,以邊
2025-01-09 23:41
【總結】......橢圓中的最值問題與定點、定值問題解決與橢圓有關的最值問題的常用方法(1)利用定義轉化為幾何問題處理;(2)利用數形結合,挖掘數學表達式的幾何特征進而求解;(3)利用函數最值得探求方法,將其轉化為區(qū)間上的二次函數
2025-03-25 04:50
【總結】......專題三:含絕對值函數的最值問題1.已知函數(),若對任意的,不等式恒成立,求實數的取值范圍.不等式化為即:(*)對任意的恒成立因為,所以分如下情況討論:[來源:學科網ZXXK]①當時,不等式(*)②當
2025-03-24 23:42
【總結】軸對稱中幾何動點最值問題總結 軸對稱的作用是“搬點移線”,可以把圖形中比較分散、缺乏聯系的元素集中到“新的圖形”中,為應用某些基本定理提供方便。比如我們可以利用軸對稱性質求幾何圖形中一些線段和的最大值或最小值問題。利用軸對稱的性質解決幾何圖形中的最值問題借助的主要基本定理有三個:(1)兩點之間線段最短;(2)三角形兩邊之和大于第三邊;(3)垂線段最短?!〕踔须A段
2025-06-26 20:26
【總結】...... 二次函數中的最值問題重難點復習一般地,如果是常數,,那么叫做的二次函數.二次函數用配方法可化成:的形式的形式,得到頂點為(,),對稱軸是.,∴頂點是,對稱軸是直線.二次函數常用來解決最值
2025-03-24 12:30
【總結】初中代數最值問題例題精講一、利用非負性【例1】求的最小值【鞏固】設為實數,那么的最小值是__________.二、利用絕對值的幾何意義【例2】求的最小值【鞏固】若,,且的最小值是7,則_________三、利用二次函數的最值【例3】四邊形的兩條對角線相互垂直,并且和等于10,求它們的長
2025-03-24 12:31
【總結】圓中的最值問題【考題展示】題1(2012年武漢中考)在坐標系中,點A的坐標為(3,0),點B為y軸正半軸上的一點,點C是第一象限內一點,且AC=2.設tan∠BOC=m,則m的取值范圍是_________.題2(2013年武漢元調)如圖,在邊長為1的等邊△OAB中,以邊AB為直徑作⊙D,以O為圓心OA長為半徑作⊙O,C為半圓弧上的一個動點(不與A、B兩點重合),射線AC交
2025-03-25 00:00
【總結】快樂學習&提高成績最值問題之將軍飲馬學生姓名:年級:科目:.任課教師:日期:時段:.
2025-03-25 03:44