【總結(jié)】快樂學習&提高成績最值問題之將軍飲馬學生姓名:年級:科目:.任課教師:日期:時段:.
2025-03-25 03:44
【總結(jié)】......(差)的最值問題【知識依據(jù)】1.線段公理——兩點之間,線段最短;2.對稱的性質(zhì)——①關于一條直線對稱的兩個圖形全等;②對稱軸是兩個對稱圖形對應點連線的垂直平分線;3.三角形兩邊之和大于第三邊;
2025-03-25 07:09
【總結(jié)】(1)配方法(2)換元法(3)圖象法(4)單調(diào)性法(5)不等式法(6)導數(shù)法(7)數(shù)形結(jié)合法(8)判別式法(9)三角函數(shù)有界性一、求函數(shù)最值的常用方法:最值問題是數(shù)學的重要內(nèi)容之一,是解決數(shù)學應用的基礎。二、典型例題例1:對每個實數(shù)x,設f(x)是y=2
2024-11-07 00:41
【總結(jié)】中考數(shù)學幾何最值問題解法在平面幾何的動態(tài)問題中,當某幾何元素在給定條件變動時,求某幾何量(如線段的長度、圖形的周長或面積、角的度數(shù)以及它們的和與差)的最大值或最小值問題,稱為最值問題。解決平面幾何最值問題的常用的方法有:(1)應用兩點間線段最短的公理(含應用三角形的三邊關系)求最值;(2)應用垂線段最短的性質(zhì)求最值;(3)應用軸對稱的性質(zhì)求最值;(4)應用二次函數(shù)求最值;(5)應用其它
2025-04-04 03:00
【總結(jié)】求解最值問題的幾種思路最值問題涉及的知識面較廣,解法靈活多變,越含著豐富的數(shù)學思想方法,對發(fā)展學生的思維,.一、利用非負數(shù)的性質(zhì)在實數(shù)范圍內(nèi),顯然有,當且僅當時,等號成立,即的最小值為.例1形碼設、為實數(shù),求的最小值.解析==
2025-03-25 05:12
【總結(jié)】......橢圓中的常見最值問題1、橢圓上的點P到二焦點的距離之積取得最大值的點是橢圓短軸的端點,取得最小值的點在橢圓長軸的端點。例1、橢圓上一點到它的二焦點的距離之積為,則取得的最大值時,P點的坐標是
2025-03-25 04:50
【總結(jié)】最值問題(1)1、(11豐臺一摸)已知:在△ABC中,BC=a,AC=b,以AB為邊作等邊三角形ABD.探究下列問題:(1)如圖1,當點D與點C位于直線AB的兩側(cè)時,a=b=3,且∠ACB=60°,則CD=;(2)如圖2,當點D與點C位于直線AB的同側(cè)時,a=b=6,且∠ACB=90°,則CD=;(3)
2025-03-25 03:43
【總結(jié)】圓錐曲線中的最值問題制作:黃石市實驗高中成冬英想一想OyxOyx換元法判別式法Q(3,4)P利用幾何意義:看成PQ的斜率Oyx變題OBAyxCDOyx
2024-11-09 23:29
【總結(jié)】求圓錐曲線的最值常用哪些方法?圓錐曲線中的最值問題(一)想一想OyxOyx換元法判別式法Q(3,4)P利用幾何意義:看成PQ的斜率圓錐曲線中的最值問題(一)Oyx變題OBAyxCD
2024-11-09 08:49
【總結(jié)】解析幾何中的最值問題一、教學目標解析幾何中的最值問題以直線或圓錐曲線作為背景,以函數(shù)和不等式等知識作為工具,具有較強的綜合性,這類問題的解決沒有固定的模式,其解法一般靈活多樣,且對于解題者有著相當高的能力要求,正基于此,這類問題近年來成為了數(shù)學高考中的難關。二、教學重點方法的靈活應用。三、教學程序1、基礎知識。探求解析幾何最值的方法有以下幾種。⑴函數(shù)法
2025-09-25 16:15
【總結(jié)】圓錐曲線的最值、范圍問題與圓錐曲線有關的范圍、最值問題,各種題型都有,既有對圓錐曲線的性質(zhì)、曲線與方程關系的研究,又對最值范圍問題有所青睞,它能綜合應用函數(shù)、三角、不等式等有關知識,緊緊抓住圓錐曲線的定義進行轉(zhuǎn)化,充分展現(xiàn)數(shù)形結(jié)合、函數(shù)與方程、化歸轉(zhuǎn)化等數(shù)學思想在解題中的應用,本文從下面幾個方面闡述該類題型的求解方法,以引起讀者注意.一、利用圓錐曲線定義求最值借助圓錐曲線定義將
2025-03-25 00:04
【總結(jié)】數(shù)列的最值問題及單調(diào)數(shù)列問題求等差數(shù)列前n項和最值的兩種方法(1)函數(shù)法:利用等差數(shù)列前n項和的函數(shù)表達式,通過配方或借助圖象求二次函數(shù)最值的方法求解.(2)鄰項變號法①時,滿足的項數(shù)m使得取得最大值為;②當時,滿足的項數(shù)m使得取得最小值為.例1、在等差數(shù)列{an}中,已知a1=20,前n項和為Sn,且S10=S15,求當n取何值時,Sn取得最大值,并求出它
2025-03-25 02:51
【總結(jié)】直線與圓二、弦長公式:直線與二次曲線相交所得的弦長1直線具有斜率,直線與二次曲線的兩個交點坐標分別為,則它的弦長注:實質(zhì)上是由兩點間距離公式推導出來的,只是用了交點坐標設而不求的技巧而已(因為,運用韋達定理來進行計算.2當直線斜率不存在是,則.三、過兩圓C1:x2+y2+D1x+E1y+F1=0和C2:x2+y2+D2x+E2y+F2=
2025-03-25 06:29
【總結(jié)】......圓錐曲線的最值、范圍問題與圓錐曲線有關的范圍、最值問題,各種題型都有,既有對圓錐曲線的性質(zhì)、曲線與方程關系的研究,又對最值范圍問題有所青睞,它能綜合應用函數(shù)、三角、不等式等有關知識,緊緊抓住圓錐曲線的定義進行轉(zhuǎn)
【總結(jié)】......圓錐曲線中的最值問題一、圓錐曲線定義、性質(zhì)1.(文)已知F是橢圓+=1的一個焦點,AB為過其中心的一條弦,則△ABF的面積最大值為( )A.6B.15C.2
2025-03-25 00:03