【總結(jié)】解析幾何中的定點和定值問題【教學(xué)目標(biāo)】學(xué)會合理選擇參數(shù)(坐標(biāo)、斜率等)表示動態(tài)圖形中的幾何對象,探究、證明其不變性質(zhì)(定點、定值等),體會“設(shè)而不求”、“整體代換”在簡化運算中的作用.【教學(xué)難、重點】解題思路的優(yōu)化.【教學(xué)方法】討論式【教學(xué)過程】一、基礎(chǔ)練習(xí)1、過直線上動點作圓的切線,則兩切點所在直線恒過一定點.此定點的坐標(biāo)為_________.【答案】【解
2025-06-18 18:55
【總結(jié)】WORD資料可編輯課題名稱:《圓錐曲線中的定點與定值問題》教學(xué)內(nèi)容分析圓錐曲線在高考中占有重要的位置,,與其他章節(jié)知識交叉的綜合性,決定了圓錐曲線在高考中地位的特殊性.定點、定值問題與運動變化密切相關(guān),這類問題常與函數(shù),不等式,向量等其他章節(jié)知識綜合,是學(xué)習(xí)圓錐曲
2025-03-25 00:03
【總結(jié)】直線與圓二、弦長公式:直線與二次曲線相交所得的弦長1直線具有斜率,直線與二次曲線的兩個交點坐標(biāo)分別為,則它的弦長注:實質(zhì)上是由兩點間距離公式推導(dǎo)出來的,只是用了交點坐標(biāo)設(shè)而不求的技巧而已(因為,運用韋達(dá)定理來進行計算.2當(dāng)直線斜率不存在是,則.三、過兩圓C1:x2+y2+D1x+E1y+F1=0和C2:x2+y2+D2x+E2y+F2=
2025-03-25 06:29
【總結(jié)】.,....課題名稱:《圓錐曲線中的定點與定值問題》教學(xué)內(nèi)容分析圓錐曲線在高考中占有重要的位置,,與其他章節(jié)知識交叉的綜合性,決定了圓錐曲線在高考中地位的特殊性.定點、定值問題與運動變化密切相關(guān),這類問題常與函數(shù),不等式,向量等其他章節(jié)知識綜合
【總結(jié)】相關(guān)知識點:含義含有可變參數(shù)的曲線系所經(jīng)過的點中不隨參數(shù)變化的某個點或某幾個點定點解法把曲線系方程按照參數(shù)進行集項,使得方程對任意參數(shù)恒成立的方程組的解即為曲線系恒過的定點含義不隨其他量的變化而發(fā)生數(shù)值變化的量定值解法建立這個量關(guān)于其他量的關(guān)系式,最后的結(jié)果與其他變化的量無關(guān)定點問
2025-08-05 03:30
【總結(jié)】望城一中數(shù)學(xué)教研組嚴(yán)文鴛2022年12月1.教材、考綱分析2.歷年試題分析3.高考命題趨勢分析4.典型例題分析圓錐曲線背景下的最值與定值問題圓錐曲線背景下的最值與定值問題利用“坐標(biāo)法”來研究幾何問題是解析幾何的基本思想。對圓錐曲線背景下的最值與定值問題
2025-08-01 16:32
【總結(jié)】........專題08解鎖圓錐曲線中的定點與定值問題一、解答題1.【陜西省榆林市第二中學(xué)2018屆高三上學(xué)期期中】已知橢圓的左右焦點分別為,離心率為;.(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;(Ⅱ)證明:在軸上存在定點,使得為定值;并求出該定點的坐標(biāo).【答案
2025-04-17 12:52
【總結(jié)】解析幾何中的定值問題1、(2014安徽高考)如圖,已知兩條拋物線,過點的三條直線、和.與和分別交于兩點,與和分別交于,與和分別交于.記的面積分別為與,求證的值為定值.證明:設(shè)直線的方程分別為.把直線與拋物線聯(lián)立求解得:,,.由三角形三頂點坐標(biāo)面積公式得:,,所以=為定值.注:(1)設(shè)?ABC三頂點的坐標(biāo)分別為,則;(2)原解答包含
2025-08-05 16:44
【總結(jié)】專題八圓錐曲線背景下的最值與定值問題【考點搜索】【考點搜索】1.圓錐曲線中取值范圍問題通常從兩個途徑思考,一是建立函數(shù),用求值域的方法求范圍;二是建立不等式,通過解不等式求范圍.2.注意利用某些代數(shù)式的幾何特征求范圍問題(如斜率、兩點的距離等).【課前導(dǎo)引】
2024-11-18 22:38
【總結(jié)】圓錐曲線中的最值問題復(fù)習(xí)1、橢圓及雙曲線第一定義;2、橢圓及雙曲線第二定義;3、拋物線定義例1、已知橢圓171622??yx及點M(1,3),F1、F2分別為橢圓的左、右焦點,A為橢圓上的任意一點,求:①∣AM│+∣AF2│
2025-08-16 02:08
2025-08-04 15:01
【總結(jié)】解析幾何中的最值問題一、教學(xué)目標(biāo)解析幾何中的最值問題以直線或圓錐曲線作為背景,以函數(shù)和不等式等知識作為工具,具有較強的綜合性,這類問題的解決沒有固定的模式,其解法一般靈活多樣,且對于解題者有著相當(dāng)高的能力要求,正基于此,這類問題近年來成為了數(shù)學(xué)高考中的難關(guān)。二、教學(xué)重點方法的靈活應(yīng)用。三、教學(xué)程序1、基礎(chǔ)知識。探求解析幾何最值的方法有以下幾種。⑴函數(shù)法
2025-09-25 16:15
【總結(jié)】......圓錐曲線中的最值問題一、圓錐曲線定義、性質(zhì)1.(文)已知F是橢圓+=1的一個焦點,AB為過其中心的一條弦,則△ABF的面積最大值為( )A.6B.15C.2
【總結(jié)】2014年幾何圖形中的最值問題谷瑞林幾何圖形中的最值問題引言:最值問題可以分為最大值和最小值。在初中包含三個方面的問題::①二次函數(shù)有最大值和最小值;②一次函數(shù)中有取值范圍時有最大值和最小值。:①如x≤7,最大值是7;②如x≥5,最小值是5.:①兩點之間線段線段最短。②直線外一點向直線上任一點連線中垂線段最短,③在三角形中,兩邊之和大于第三邊,兩邊之差小于第三邊。一、
2025-03-24 12:12
【總結(jié)】直線中的最值問題基礎(chǔ)卷一.選擇題:1.設(shè)-π≤α≤π,點P(1,1)到直線xcosα+ysinα=2的最大距離是(A)2-(B)2+(C)2(D)2.點P為直線x-y+4=0上任意一點,O為原點,則|OP|的最小值為(A)(B)(C)2(D)23.已知兩點P(cosα,sinα),Q(cosβ,sinβ),則|PQ|的最大值