【總結(jié)】定點、定直線、定值專題1、已知橢圓的中心在坐標(biāo)原點,焦點在軸上,橢圓上的點到焦點距離的最大值為,最小值為.(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;(Ⅱ)若直線與橢圓相交于,兩點(不是左右頂點),且以為直徑的圓過橢圓的右頂點,求證:直線過定點,并求出該定點的坐標(biāo).【標(biāo)準(zhǔn)答案】(I)由題意設(shè)橢圓的標(biāo)準(zhǔn)方程為,(II)設(shè),由得,,.以AB為直徑的圓過橢圓的右頂點,,(最好是用
2025-03-26 05:41
【總結(jié)】望城一中數(shù)學(xué)教研組嚴(yán)文鴛2022年12月1.教材、考綱分析2.歷年試題分析3.高考命題趨勢分析4.典型例題分析圓錐曲線背景下的最值與定值問題圓錐曲線背景下的最值與定值問題利用“坐標(biāo)法”來研究幾何問題是解析幾何的基本思想。對圓錐曲線背景下的最值與定值問題
2025-08-01 16:32
【總結(jié)】專題八圓錐曲線背景下的最值與定值問題【考點搜索】【考點搜索】1.圓錐曲線中取值范圍問題通常從兩個途徑思考,一是建立函數(shù),用求值域的方法求范圍;二是建立不等式,通過解不等式求范圍.2.注意利用某些代數(shù)式的幾何特征求范圍問題(如斜率、兩點的距離等).【課前導(dǎo)引】
2025-11-09 22:38
【總結(jié)】圓錐曲線中的定點問題明對任意情況都成立找到定點,再證方法三:通過特殊位置的值求出方法二:通過計算可以)則直線過(例如的關(guān)系與方法一:找到設(shè)直線為基本思想:.,022,bkbbkbkxy????【例1-1】已知拋物線C:y2=2px(p0)的焦點F(1,0),O為坐
2025-08-05 04:45
【總結(jié)】圓錐曲線過定點問題一、小題自測1.無論取任何實數(shù),直線必經(jīng)過一個定點,則這個定點的坐標(biāo)為.2.已知直線;圓,則直線與圓的位置關(guān)系為.二、幾個常見結(jié)論:滿足一定條件的曲線上兩點連結(jié)所得的直線過定點或滿足一定條件的曲線過定點,這構(gòu)成了過定點問題。1、過定點模型:是圓錐曲線上的兩動點,是一定點,其
2025-03-25 00:04
【總結(jié)】與圓錐曲線相關(guān)的定值定點問題真題回顧12???求的值.123111FPFPFP?+定值,并求出定值.為CD直線的斜率為定值.真題回顧lAC使得被為直徑的圓截得的弦長恒為定值l直線過定點AB
2025-03-12 11:08
【總結(jié)】麻城市第一中學(xué)圓錐曲線中的定點問題麻城一中王輝麻城市第一中學(xué)1.解析幾何中,定點問題是高考命題的一個熱點,也是一個難點,因為定點必然是在變化中所表現(xiàn)出來的不變量,所以可運(yùn)用函數(shù)的思想方法,結(jié)合等式的恒成立求解,也就是說要與題中的可變量無關(guān)。2.求定點常用方法有兩種:①特殊到一般法,根據(jù)動點、
2025-08-05 04:47
【總結(jié)】2020/12/131熱烈歡迎領(lǐng)導(dǎo)和專家蒞臨指導(dǎo)2020/12/132圓錐曲線中的最值問題?復(fù)習(xí)目標(biāo):?1.能根據(jù)變化中的幾何量的關(guān)系,建立目標(biāo)函數(shù),然后利用求函數(shù)最值的方法(如利用一次或二次函數(shù)的單調(diào)性,三角函數(shù)的值域,基本不等式,判別式等)求出最值.
2025-10-28 23:19
【總結(jié)】圓錐曲線的最值、范圍問題與圓錐曲線有關(guān)的范圍、最值問題,各種題型都有,既有對圓錐曲線的性質(zhì)、曲線與方程關(guān)系的研究,又對最值范圍問題有所青睞,它能綜合應(yīng)用函數(shù)、三角、不等式等有關(guān)知識,緊緊抓住圓錐曲線的定義進(jìn)行轉(zhuǎn)化,充分展現(xiàn)數(shù)形結(jié)合、函數(shù)與方程、化歸轉(zhuǎn)化等數(shù)學(xué)思想在解題中的應(yīng)用,本文從下面幾個方面闡述該類題型的求解方法,以引起讀者注意.一、利用圓錐曲線定義求最值借助圓錐曲線定義將
【總結(jié)】......橢圓一、直線與橢圓問題的常規(guī)解題方法:;(提醒:①設(shè)直線時分斜率存在與不存在;②設(shè)為y=kx+b與x=my+n的區(qū)別);(提醒:之所以要設(shè)是因為不去求出它,即“設(shè)而不求”);
2025-03-25 04:50
【總結(jié)】......圓錐曲線的最值、范圍問題與圓錐曲線有關(guān)的范圍、最值問題,各種題型都有,既有對圓錐曲線的性質(zhì)、曲線與方程關(guān)系的研究,又對最值范圍問題有所青睞,它能綜合應(yīng)用函數(shù)、三角、不等式等有關(guān)知識,緊緊抓住圓錐曲線的定義進(jìn)行轉(zhuǎn)
【總結(jié)】......圓錐曲線中的最值問題一、圓錐曲線定義、性質(zhì)1.(文)已知F是橢圓+=1的一個焦點,AB為過其中心的一條弦,則△ABF的面積最大值為( )A.6B.15C.2
2025-03-25 00:03
【總結(jié)】......2017屆高三第一輪復(fù)習(xí)專題訓(xùn)練之圓錐曲線中的定點定值問題的四種模型定點問題是常見的出題形式,化解這類問題的關(guān)鍵就是引進(jìn)變的參數(shù)表示直線方程、數(shù)量積、比例關(guān)系等,根據(jù)等式的恒成立、數(shù)式變換等尋找不受參數(shù)影響的
【總結(jié)】......橢圓中的最值問題與定點、定值問題解決與橢圓有關(guān)的最值問題的常用方法(1)利用定義轉(zhuǎn)化為幾何問題處理;(2)利用數(shù)形結(jié)合,挖掘數(shù)學(xué)表達(dá)式的幾何特征進(jìn)而求解;(3)利用函數(shù)最值得探求方法,將其轉(zhuǎn)化為區(qū)間上的二次函數(shù)
【總結(jié)】直線與圓錐曲線綜合問題一.考點分析。⑴直線與圓錐曲線的位置關(guān)系和判定直線與圓錐曲線的位置關(guān)系有三種情況:相交、相切、相離.直線方程是二元一次方程,圓錐曲線方程是二元二次方程,由它們組成的方程組,經(jīng)過消元得到一個一元二次方程,直線和圓錐曲線相交、相切、相離的充分必要條件分別是0??、0??、0??.⑵直線與圓錐曲線相交所得的弦長
2025-01-09 16:02