【導讀】0,即其導數(shù)為負;在某個區(qū)間(a,b)內(nèi),并求出其單調(diào)區(qū)間.確定函數(shù)y=f的定義域;
【總結(jié)】《函數(shù)的單調(diào)性與導數(shù)》教學設(shè)計教材分析1、內(nèi)容分析??導數(shù)是微積分的核心概念之一,是高中數(shù)學教材新增知識,在研究函數(shù)性質(zhì)時有獨到之處,,是在學習了導數(shù)的概念、,又為研究函數(shù)的極值和最值打下了基礎(chǔ).由于學生在高一已經(jīng)掌握了函數(shù)單調(diào)性的定義,,用導數(shù)判斷函數(shù)的單調(diào)性比用定義要簡捷的多(尤其對于三次和三次以上的多項式函數(shù),或圖像難以畫出的函數(shù)而言),充
2025-04-16 23:38
【總結(jié)】淺談作文訓練書面表達一直是學習語文的重要組成部分。它要求學生有扎實的語言基本功,具備一定的審題能力、想象能力、表達能力等。老師只有在平時教學中有意識地系統(tǒng)訓練學生的寫作能力,學生才能在激烈的競爭中信心十足,游刃有余。一、循序漸進“冰凍三尺,非一日之寒”。寫作能力并非是一蹴而就的。它必須由淺入深、由簡到繁、由易到難、循序漸進、一環(huán)緊扣一
2024-11-23 12:37
【總結(jié)】第一篇:函數(shù)的單調(diào)性與導數(shù)課后反思 課后反思 : 教學過程中教師指導啟發(fā)學生以已知的熟悉的二次函數(shù)為研究的起點,發(fā)現(xiàn)函數(shù)的導數(shù)的正負與函數(shù)單調(diào)性的關(guān)系,從而到更多的,更復雜的函數(shù),從中發(fā)現(xiàn)規(guī)律,...
2024-11-04 01:27
【總結(jié)】導數(shù)的應用—函數(shù)的單調(diào)性教學目的:;教學重點:利用導數(shù)判斷函數(shù)單調(diào)性教學難點:利用導數(shù)判斷函數(shù)單調(diào)性授課類型:新授課課時安排:1課時1、函數(shù)f(x)在點x0處的導數(shù)定義2、某點處導數(shù)的幾何意義3、導函數(shù)的定義xyx???0lim??
2025-01-01 03:50
【總結(jié)】教學目標?:掌握用導數(shù)的符號判別函數(shù)增減性的方法,提高對導數(shù)與微分的學習意義的認識.?:訓練解題方法,培養(yǎng)解題能力。?:能用普遍聯(lián)系的觀點看待事物,抓住引起事物變化的主要因素。?:數(shù)學方法的廣泛應用之美,數(shù)學內(nèi)容的統(tǒng)一性。重點:利用導數(shù)的符號確定函數(shù)的單調(diào)區(qū)間。難點:利用導數(shù)的符號確定函數(shù)的單調(diào)區(qū)間.單調(diào)性的概念
2024-11-06 23:03
【總結(jié)】新課標人教版課件系列《高中數(shù)學》選修1-1《導數(shù)在研究函數(shù)中的應用-單調(diào)性》審校:王偉教學目標?原理;??教學重點:?利用導數(shù)判斷函數(shù)單調(diào)性.函數(shù)的單調(diào)性與導數(shù)情境設(shè)置探索研究演練反饋總結(jié)提煉作業(yè)布置創(chuàng)新升級oy
2024-11-24 14:05
【總結(jié)】《函數(shù)的單調(diào)性與導數(shù)》同步檢測一、基礎(chǔ)過關(guān)1.命題甲:對任意x∈(a,b),有f′(x)0;命題乙:f(x)在(a,b)內(nèi)是單調(diào)遞增的.則甲是乙的______條件.2.函數(shù)f(x)=(x-3)ex的單調(diào)增區(qū)間是________.3.下列函數(shù)中,在(0,+∞)內(nèi)為增函數(shù)的是______.
2024-12-07 20:50
【總結(jié)】函數(shù)的單調(diào)性與奇偶性一.基礎(chǔ)練習:1.求下列函數(shù)的單調(diào)區(qū)間:(1)223xxy???(2)2212???xxy2.判斷下列函數(shù)奇偶性:(1)|32||32|)(????xxxf(2)2|2|1)(2????xxxf12?x(x0)
2024-11-10 23:50
【總結(jié)】導數(shù)與函數(shù)的單調(diào)性、極值、最值適用學科高中數(shù)學適用年級高中三年級適用區(qū)域通用課時時長(分鐘)60知識點函數(shù)的單調(diào)性函數(shù)的極值函數(shù)的最值教學目標掌握函數(shù)的單調(diào)性求法,會求函數(shù)的函數(shù)的極值,會求解最值問題,教學重點會利用導數(shù)求解函數(shù)的單調(diào)性,會求解函數(shù)的最值。教學難點熟練掌握函數(shù)的單調(diào)性、極值、最值的求法,以及分類討論思想的應用
2025-07-26 05:39
【總結(jié)】§1.3.1函數(shù)的單調(diào)性與導數(shù)(第1課時)教學目標1.了解可導函數(shù)的單調(diào)性與其導數(shù)的關(guān)系;2.能利用導數(shù)研究函數(shù)的單調(diào)性,掌握求函數(shù)(對多項式函數(shù)一般不超過三次)的單調(diào)區(qū)間;教學重點利用導數(shù)研究函數(shù)的單調(diào)性,會求不超過三次的多項式函數(shù)的單調(diào)區(qū)間教學難點利用導數(shù)研究函數(shù)的單調(diào)性,會求不超過三次的多項式函數(shù)的單調(diào)區(qū)間教學方法講練結(jié)合法教學用具小
2025-04-16 22:05
【總結(jié)】第一篇:函數(shù)單調(diào)性與導數(shù)教案 【三維目標】 知識與技能: 過程與方法:,掌握用導數(shù)研究單調(diào)性的方法 、分析、概括的能力滲透數(shù)形結(jié)合思想、轉(zhuǎn)化思想。 情感態(tài)度與價值觀:通過在教學過程中...
2024-10-30 22:00
【總結(jié)】高二數(shù)學《導數(shù)的應用-單調(diào)性與極值》教學案例分析課題計劃?本節(jié)課的內(nèi)容是蘇教版選修1-1第一章第二部分的內(nèi)容(文科)。這一知識點在高考中是熱點,06年、08、09年廣東、江蘇高考均以解答題出現(xiàn),從這節(jié)課中我有以下反思:?????一、有明確的教學目標?????(一)知識目
2025-01-19 03:04
【總結(jié)】新疆和靜高級中學高三第一輪復習函數(shù)的單調(diào)性新疆和靜高級中學1、函數(shù)的單調(diào)性的定義2、判斷函數(shù)單調(diào)性(求單調(diào)區(qū)間)的方法:(1)從定義入手(2)從導數(shù)入手(3)從圖象入手(4)從熟悉的函數(shù)入手(5)從復合函數(shù)的單調(diào)性規(guī)律入手注:先求函數(shù)的定義域3、函數(shù)單調(diào)性的證明:定義
2024-11-12 17:15
【總結(jié)】:在某個區(qū)間(a,b)內(nèi),如果,那么函數(shù)在這個區(qū)間內(nèi)單調(diào)遞增;如果,,那么函數(shù)在這個區(qū)間上是常數(shù)函數(shù).注:函數(shù)在(a,b)內(nèi)單調(diào)遞增,則,是在(a,b)內(nèi)單調(diào)遞增的充分不必要條件.:曲線在極值點處切線的斜率為0,并且,曲線在極大值點左側(cè)切線的斜率為正,右側(cè)為負;曲線在極小值點左側(cè)切線的斜率為負,右側(cè)為正.一般地,當函數(shù)在點處連續(xù)時,判斷是極大(?。┲档姆椒ㄊ牵海?)如果在附
2025-06-19 04:25
【總結(jié)】復習1、某點處導數(shù)的定義——這一點處的導數(shù)即為這一點處切線的斜率2、某點處導數(shù)的幾何意義——3、導函數(shù)的定義——4、由定義求導數(shù)的步驟(三步法)5、求導的公式與法則——如果函數(shù)f(x)、g(x)有導數(shù),那么6、求導的方法——