【總結(jié)】導數(shù)的應用—函數(shù)的單調(diào)性教學目的:;教學重點:利用導數(shù)判斷函數(shù)單調(diào)性教學難點:利用導數(shù)判斷函數(shù)單調(diào)性授課類型:新授課課時安排:1課時1、函數(shù)f(x)在點x0處的導數(shù)定義2、某點處導數(shù)的幾何意義3、導函數(shù)的定義xyx???0lim??
2025-01-01 03:50
【總結(jié)】導數(shù)與函數(shù)的單調(diào)性、極值、最值適用學科高中數(shù)學適用年級高中三年級適用區(qū)域通用課時時長(分鐘)60知識點函數(shù)的單調(diào)性函數(shù)的極值函數(shù)的最值教學目標掌握函數(shù)的單調(diào)性求法,會求函數(shù)的函數(shù)的極值,會求解最值問題,教學重點會利用導數(shù)求解函數(shù)的單調(diào)性,會求解函數(shù)的最值。教學難點熟練掌握函數(shù)的單調(diào)性、極值、最值的求法,以及分類討論思想的應用
2025-07-26 05:39
【總結(jié)】函數(shù)單調(diào)性與導數(shù)羅田縣駱駝坳中學教學目標分析教學內(nèi)容解析教學問題診斷教學對策分析教學基本流程教學設計教學過程設計數(shù)學課程標準要求學生把導數(shù)作為研究變量和函數(shù)的重要方法和手段,了解導數(shù)在研究單調(diào)性、極值、最值上的重要作用,體會導數(shù)的思想和基本內(nèi)涵,了解
2024-11-22 01:56
【總結(jié)】函數(shù)的奇偶性與單調(diào)性(首先定義域必須關于原點對稱)(1)為奇函數(shù);為偶函數(shù);(2)奇函數(shù)在原點有定義(3)任一個定義域關于原點對稱的函數(shù)一定可以表示成一個奇函數(shù)和一個偶函數(shù)之和???即(奇)(偶).?(注:①先確定定義域;②單調(diào)性證明一定要用定義)?(1)定義:區(qū)間上任意兩個值,若時有,稱為上增函數(shù),若時有,稱為上
2025-05-16 01:41
【總結(jié)】導數(shù)與函數(shù)的單調(diào)性(4).對數(shù)函數(shù)的導數(shù):.1)(ln)1(xx??.ln1)(log)2(axxa??(5).指數(shù)函數(shù)的導數(shù):.)()1(xxee??).1,0(ln)()2(????aaaaaxxxxcos)(sin1??)((3)
2024-11-11 08:49
【總結(jié)】教材分析本節(jié)的教學內(nèi)容屬導數(shù)的應用,是在學生學習了導數(shù)的概念、幾何意義、計算的基礎上學習的內(nèi)容,學好它既可加深對導數(shù)的理解,,應使學生體驗到,用導數(shù)判斷單調(diào)性要比用
2025-06-08 00:17
【總結(jié)】:在某個區(qū)間(a,b)內(nèi),如果,那么函數(shù)在這個區(qū)間內(nèi)單調(diào)遞增;如果,,那么函數(shù)在這個區(qū)間上是常數(shù)函數(shù).注:函數(shù)在(a,b)內(nèi)單調(diào)遞增,則,是在(a,b)內(nèi)單調(diào)遞增的充分不必要條件.:曲線在極值點處切線的斜率為0,并且,曲線在極大值點左側(cè)切線的斜率為正,右側(cè)為負;曲線在極小值點左側(cè)切線的斜率為負,右側(cè)為正.一般地,當函數(shù)在點處連續(xù)時,判斷是極大(?。┲档姆椒ㄊ牵海?)如果在附
2025-06-19 04:25
【總結(jié)】 導數(shù)在研究函數(shù)中的應用 函數(shù)的單調(diào)性與導數(shù)學習目標:.(易混點).(重點).(重點、難點)[自主預習·探新知]1.函數(shù)的單調(diào)性與其導數(shù)正負的關系定義在區(qū)間(a,b)內(nèi)的函數(shù)y=f(x):f′(x)的正負f(x)的單調(diào)性f′(x)>0單調(diào)遞增f′(x)<0單調(diào)遞減思考:如果在某個區(qū)間內(nèi)恒有f′(x)=0,那么函數(shù)f(x)有什么特
2025-06-25 05:13
【總結(jié)】?函數(shù)的單調(diào)性(兩課時)棗莊八中許靜【教學目標】1.使學生從形與數(shù)兩方面理解函數(shù)單調(diào)性的概念,初步掌握利用函數(shù)圖象和單調(diào)性定義判斷、證明函數(shù)單調(diào)性的方法.2.通過對函數(shù)單調(diào)性定義的探究,滲透數(shù)形結(jié)合數(shù)學思想方法,培養(yǎng)學生觀察、歸納、抽象的能力和語言表達能力;通過
2025-04-16 23:39
【總結(jié)】高一數(shù)學課題:函數(shù)的單調(diào)性教材:人教版全日制普通高級中學教科書(必修)數(shù)學第一冊(上)【教學目標】1.使學生從形與數(shù)兩方面理解函數(shù)單調(diào)性的概念,初步掌握利用函數(shù)圖象和定義判斷、證明函數(shù)單調(diào)性的方法.2.通過對函數(shù)單調(diào)性定義的探究,滲透數(shù)形結(jié)合的思想方法,培養(yǎng)學生觀察、歸納、抽象的能力和語言表達能
2025-04-16 23:38
【總結(jié)】導數(shù)在函數(shù)的單調(diào)性、極值中的應用一、知識梳理1.函數(shù)的單調(diào)性與導數(shù)在區(qū)間(a,b)內(nèi),函數(shù)的單調(diào)性與其導數(shù)的正負有如下關系:如果f_′(x)0,那么函數(shù) y=f(x)在這個區(qū)間內(nèi)單調(diào)遞增;如果f_′(x)0,那么函數(shù) y=f(x)在這個區(qū)間內(nèi)單調(diào)遞減;如果f_′(x)=0,那么 f(x)在這個區(qū)間內(nèi)為常數(shù).問題探究1:若函數(shù) f(x)在(a,b)內(nèi)
2025-08-04 07:33
【總結(jié)】函數(shù)單調(diào)性與導數(shù)練習題高二一部數(shù)學組劉蘇文2017年4月15日一、選擇題′(x0)=0時,則f(x0)為f(x)的極大值′(x0)=0時,則f(x0)為f(x)的極小值′(x0)=0時,則f(x0)為f(x)的極值(x0)為函數(shù)f(x)的極值且f′(x0)存在時,則有f′(x0)=0,在x=0處取得極值的函數(shù)是①y=x3②y=x2+1③
2025-06-18 22:00
【總結(jié)】課題:導數(shù)與函數(shù)的單調(diào)性、極值、最值科目:數(shù)學教學對象:高三課時第1課時提供者:段秀香單位:靜海第六中學一、教學內(nèi)容分析 現(xiàn)在中學數(shù)學新教材中,導數(shù)(選修2-2)處于一種特殊的地位,是高中數(shù)學知識的一個重要交匯點,是聯(lián)系多個章節(jié)內(nèi)容以及解決相關問題的重要工具。天津高考中必有考一道解答題(如2009-2011年常規(guī)題或2012-2014年壓軸題)和一道選擇
2025-04-17 00:39
【總結(jié)】一、課題:函數(shù)的單調(diào)性二、教學目標1、知識目標:從形與數(shù)兩方面理解函數(shù)單調(diào)性的概念,初步掌握利用函數(shù)圖象和單調(diào)性定義判斷、證明函數(shù)單調(diào)性的方法.2、能力目標:通過對函數(shù)單調(diào)性定義的探究,培養(yǎng)學生滲透數(shù)形結(jié)合數(shù)學思想方法,培養(yǎng)學生觀察、歸納、抽象的能力和語言表達能力;通過對函數(shù)單調(diào)性的證明,提高學生的推理論證能力.3、情感目標:通過對單調(diào)性的探究培養(yǎng)學生細心觀
2025-06-07 16:29
【總結(jié)】,能利用導數(shù)研究函數(shù)的單調(diào)性,會求函數(shù)的單調(diào)區(qū)間(對多項式函數(shù)求導一般不超過三次).;會用導數(shù)求函數(shù)的極大值、極小值(對多項式函數(shù)求導一般不超過三次);會求閉區(qū)間上函數(shù)的最大值、最小值(對多項式函數(shù)求導一般不超過三次)..在區(qū)間(a,b)內(nèi),函數(shù)的單調(diào)性與其導數(shù)的正負有
2025-08-23 15:21