【總結】導數(shù)與函數(shù)的單調性、極值、最值適用學科高中數(shù)學適用年級高中三年級適用區(qū)域通用課時時長(分鐘)60知識點函數(shù)的單調性函數(shù)的極值函數(shù)的最值教學目標掌握函數(shù)的單調性求法,會求函數(shù)的函數(shù)的極值,會求解最值問題,教學重點會利用導數(shù)求解函數(shù)的單調性,會求解函數(shù)的最值。教學難點熟練掌握函數(shù)的單調性、極值、最值的求法,以及分類討論思想的應用
2025-07-26 05:39
【總結】函數(shù)單調性與導數(shù)羅田縣駱駝坳中學教學目標分析教學內容解析教學問題診斷教學對策分析教學基本流程教學設計教學過程設計數(shù)學課程標準要求學生把導數(shù)作為研究變量和函數(shù)的重要方法和手段,了解導數(shù)在研究單調性、極值、最值上的重要作用,體會導數(shù)的思想和基本內涵,了解
2024-11-22 01:56
【總結】第四章§1理解教材新知把握熱點考向應用創(chuàng)新演練考點一考點二考點三函數(shù)f(x)=x2-2x-2的圖像如圖所示:問題1:當x0∈(-∞,1)時,函數(shù)在(x0,f(x0))處的切線斜率f′(x0)大于零還是小于零?
2024-11-17 17:14
【總結】導數(shù)與函數(shù)的單調性(4).對數(shù)函數(shù)的導數(shù):.1)(ln)1(xx??.ln1)(log)2(axxa??(5).指數(shù)函數(shù)的導數(shù):.)()1(xxee??).1,0(ln)()2(????aaaaaxxxxcos)(sin1??)((3)
2024-11-11 08:49
【總結】教材分析本節(jié)的教學內容屬導數(shù)的應用,是在學生學習了導數(shù)的概念、幾何意義、計算的基礎上學習的內容,學好它既可加深對導數(shù)的理解,,應使學生體驗到,用導數(shù)判斷單調性要比用
2025-06-08 00:17
【總結】:在某個區(qū)間(a,b)內,如果,那么函數(shù)在這個區(qū)間內單調遞增;如果,,那么函數(shù)在這個區(qū)間上是常數(shù)函數(shù).注:函數(shù)在(a,b)內單調遞增,則,是在(a,b)內單調遞增的充分不必要條件.:曲線在極值點處切線的斜率為0,并且,曲線在極大值點左側切線的斜率為正,右側為負;曲線在極小值點左側切線的斜率為負,右側為正.一般地,當函數(shù)在點處連續(xù)時,判斷是極大(?。┲档姆椒ㄊ牵海?)如果在附
2025-06-19 04:25
【總結】第一篇:函數(shù)單調性與導數(shù)教案 【三維目標】 知識與技能: 過程與方法:,掌握用導數(shù)研究單調性的方法 、分析、概括的能力滲透數(shù)形結合思想、轉化思想。 情感態(tài)度與價值觀:通過在教學過程中...
2024-10-30 22:00
【總結】導數(shù)在函數(shù)的單調性、極值中的應用一、知識梳理1.函數(shù)的單調性與導數(shù)在區(qū)間(a,b)內,函數(shù)的單調性與其導數(shù)的正負有如下關系:如果f_′(x)0,那么函數(shù) y=f(x)在這個區(qū)間內單調遞增;如果f_′(x)0,那么函數(shù) y=f(x)在這個區(qū)間內單調遞減;如果f_′(x)=0,那么 f(x)在這個區(qū)間內為常數(shù).問題探究1:若函數(shù) f(x)在(a,b)內
2025-08-04 07:33
【總結】函數(shù)單調性與導數(shù)練習題高二一部數(shù)學組劉蘇文2017年4月15日一、選擇題′(x0)=0時,則f(x0)為f(x)的極大值′(x0)=0時,則f(x0)為f(x)的極小值′(x0)=0時,則f(x0)為f(x)的極值(x0)為函數(shù)f(x)的極值且f′(x0)存在時,則有f′(x0)=0,在x=0處取得極值的函數(shù)是①y=x3②y=x2+1③
2025-06-18 22:00
【總結】課題:導數(shù)與函數(shù)的單調性、極值、最值科目:數(shù)學教學對象:高三課時第1課時提供者:段秀香單位:靜海第六中學一、教學內容分析 現(xiàn)在中學數(shù)學新教材中,導數(shù)(選修2-2)處于一種特殊的地位,是高中數(shù)學知識的一個重要交匯點,是聯(lián)系多個章節(jié)內容以及解決相關問題的重要工具。天津高考中必有考一道解答題(如2009-2011年常規(guī)題或2012-2014年壓軸題)和一道選擇
2025-04-17 00:39
【總結】,能利用導數(shù)研究函數(shù)的單調性,會求函數(shù)的單調區(qū)間(對多項式函數(shù)求導一般不超過三次).;會用導數(shù)求函數(shù)的極大值、極小值(對多項式函數(shù)求導一般不超過三次);會求閉區(qū)間上函數(shù)的最大值、最小值(對多項式函數(shù)求導一般不超過三次)..在區(qū)間(a,b)內,函數(shù)的單調性與其導數(shù)的正負有
2024-09-01 15:21
【總結】教學目標?:掌握用導數(shù)的符號判別函數(shù)增減性的方法,提高對導數(shù)與微分的學習意義的認識.?:訓練解題方法,培養(yǎng)解題能力。?:能用普遍聯(lián)系的觀點看待事物,抓住引起事物變化的主要因素。?:數(shù)學方法的廣泛應用之美,數(shù)學內容的統(tǒng)一性。重點:利用導數(shù)的符號確定函數(shù)的單調區(qū)間。難點:利用導數(shù)的符號確定函數(shù)的單調區(qū)間.單調性的概念
2024-11-06 23:03
【總結】1北京市中小學“京教杯”青年教師教學設計大賽教學設計參與人員姓名單位聯(lián)系方式設計者彭青松北京醫(yī)學院附屬中學13717900631實施者彭青松北京醫(yī)學院附屬中學13717900631指導者李寧北京大學附屬中學13601082518張思明北京大學附屬中學010
2024-11-29 10:10
【總結】1高二數(shù)學課堂任務單課題:任務一:分析函數(shù)()3lnCttt???的單調性任務二:分析豎直上拋小沙袋過程中,位移X是時間t的函數(shù),設X=X(t),(1).畫出位移
2024-11-23 15:13
【總結】南京市第三十九中學θ第2.1.1節(jié)開頭的第三個問題中,氣溫θ是關于時間t的函數(shù)4812162024to-2248610xyoyY=2x+1xoY=(x-1)2-112-1yxy=x3oyOxx1y?
2024-11-17 22:49