【導(dǎo)讀】率f′大于零還是小于零?問題4:f=x2-2x-2在上單調(diào)性如何?1.求函數(shù)的單調(diào)區(qū)間先求函數(shù)的定義域,再求導(dǎo)數(shù)f′,知,f′=0,即并不是在定義域內(nèi)的任意一點處都滿足f′>0.[例2]已知函數(shù)f=x3-ax+6.[精解詳析]由題意f′=3x2-a,由不等式恒成立求參數(shù)范圍;
【總結(jié)】《函數(shù)的單調(diào)性與導(dǎo)數(shù)》同步檢測一、基礎(chǔ)過關(guān)1.命題甲:對任意x∈(a,b),有f′(x)0;命題乙:f(x)在(a,b)內(nèi)是單調(diào)遞增的.則甲是乙的______條件.2.函數(shù)f(x)=(x-3)ex的單調(diào)增區(qū)間是________.3.下列函數(shù)中,在(0,+∞)內(nèi)為增函數(shù)的是______.
2024-12-07 20:50
【總結(jié)】函數(shù)的單調(diào)性與奇偶性一.基礎(chǔ)練習(xí):1.求下列函數(shù)的單調(diào)區(qū)間:(1)223xxy???(2)2212???xxy2.判斷下列函數(shù)奇偶性:(1)|32||32|)(????xxxf(2)2|2|1)(2????xxxf12?x(x0)
2025-11-01 23:50
【總結(jié)】導(dǎo)數(shù)與函數(shù)的單調(diào)性、極值、最值適用學(xué)科高中數(shù)學(xué)適用年級高中三年級適用區(qū)域通用課時時長(分鐘)60知識點函數(shù)的單調(diào)性函數(shù)的極值函數(shù)的最值教學(xué)目標(biāo)掌握函數(shù)的單調(diào)性求法,會求函數(shù)的函數(shù)的極值,會求解最值問題,教學(xué)重點會利用導(dǎo)數(shù)求解函數(shù)的單調(diào)性,會求解函數(shù)的最值。教學(xué)難點熟練掌握函數(shù)的單調(diào)性、極值、最值的求法,以及分類討論思想的應(yīng)用
2025-07-26 05:39
【總結(jié)】§1.3.1函數(shù)的單調(diào)性與導(dǎo)數(shù)(第1課時)教學(xué)目標(biāo)1.了解可導(dǎo)函數(shù)的單調(diào)性與其導(dǎo)數(shù)的關(guān)系;2.能利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,掌握求函數(shù)(對多項式函數(shù)一般不超過三次)的單調(diào)區(qū)間;教學(xué)重點利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,會求不超過三次的多項式函數(shù)的單調(diào)區(qū)間教學(xué)難點利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,會求不超過三次的多項式函數(shù)的單調(diào)區(qū)間教學(xué)方法講練結(jié)合法教學(xué)用具小
2025-04-16 22:05
【總結(jié)】第一篇:函數(shù)單調(diào)性與導(dǎo)數(shù)教案 【三維目標(biāo)】 知識與技能: 過程與方法:,掌握用導(dǎo)數(shù)研究單調(diào)性的方法 、分析、概括的能力滲透數(shù)形結(jié)合思想、轉(zhuǎn)化思想。 情感態(tài)度與價值觀:通過在教學(xué)過程中...
2025-10-21 22:00
【總結(jié)】 導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用 函數(shù)的單調(diào)性與導(dǎo)數(shù)學(xué)習(xí)目標(biāo):.(易混點).(重點).(重點、難點)[自主預(yù)習(xí)·探新知]1.函數(shù)的單調(diào)性與其導(dǎo)數(shù)正負(fù)的關(guān)系定義在區(qū)間(a,b)內(nèi)的函數(shù)y=f(x):f′(x)的正負(fù)f(x)的單調(diào)性f′(x)>0單調(diào)遞增f′(x)<0單調(diào)遞減思考:如果在某個區(qū)間內(nèi)恒有f′(x)=0,那么函數(shù)f(x)有什么特
2025-06-25 05:13
【總結(jié)】教材分析本節(jié)的教學(xué)內(nèi)容屬導(dǎo)數(shù)的應(yīng)用,是在學(xué)生學(xué)習(xí)了導(dǎo)數(shù)的概念、幾何意義、計算的基礎(chǔ)上學(xué)習(xí)的內(nèi)容,學(xué)好它既可加深對導(dǎo)數(shù)的理解,,應(yīng)使學(xué)生體驗到,用導(dǎo)數(shù)判斷單調(diào)性要比用
2025-06-08 00:17
【總結(jié)】:在某個區(qū)間(a,b)內(nèi),如果,那么函數(shù)在這個區(qū)間內(nèi)單調(diào)遞增;如果,,那么函數(shù)在這個區(qū)間上是常數(shù)函數(shù).注:函數(shù)在(a,b)內(nèi)單調(diào)遞增,則,是在(a,b)內(nèi)單調(diào)遞增的充分不必要條件.:曲線在極值點處切線的斜率為0,并且,曲線在極大值點左側(cè)切線的斜率為正,右側(cè)為負(fù);曲線在極小值點左側(cè)切線的斜率為負(fù),右側(cè)為正.一般地,當(dāng)函數(shù)在點處連續(xù)時,判斷是極大(?。┲档姆椒ㄊ牵海?)如果在附
2025-06-19 04:25
【總結(jié)】復(fù)習(xí)1、某點處導(dǎo)數(shù)的定義——這一點處的導(dǎo)數(shù)即為這一點處切線的斜率2、某點處導(dǎo)數(shù)的幾何意義——3、導(dǎo)函數(shù)的定義——4、由定義求導(dǎo)數(shù)的步驟(三步法)5、求導(dǎo)的公式與法則——如果函數(shù)f(x)、g(x)有導(dǎo)數(shù),那么6、求導(dǎo)的方法——
2025-10-28 23:03
【總結(jié)】返回上頁下頁第一節(jié)微分中值定理一、羅爾定理定理1(羅爾(Rolle)定理)如果函數(shù)f(x)(1)在[a,b]上連續(xù),(2)在(a,b)內(nèi)可導(dǎo),(3)f(a)=f(b),則至少存在一點?∈(a,b),使得f?(?)=0.
2024-12-08 01:16
【總結(jié)】1.設(shè)函數(shù)。(1)當(dāng)a=1時,求的單調(diào)區(qū)間。(2)若在上的最大值為,求a的值。解:對函數(shù)求導(dǎo)得:,定義域為(0,2)當(dāng)a=1時,令當(dāng)為增區(qū)間;當(dāng)為減函數(shù)。當(dāng)有最大值,則必不為減函數(shù),且0,為單調(diào)遞增區(qū)間。最大值在右端點取到。。2.已知函數(shù)其中實數(shù)。(I)若a=2,求曲線在點處的切線方程;(II)若在x=1處取得極值,試討論的單調(diào)
2025-03-24 07:03
【總結(jié)】函數(shù)的單調(diào)性北京市蘋果園中學(xué)畢燁目錄學(xué)生情況分析2教學(xué)目標(biāo)分析3教學(xué)重難點分析4教學(xué)內(nèi)容分析1教學(xué)方法分析5教學(xué)過程設(shè)計6目錄學(xué)生情況分析2教學(xué)目標(biāo)分析3教學(xué)重難點分析4教學(xué)內(nèi)容分析1教學(xué)方法分析
2025-07-18 11:02
【總結(jié)】第四章函數(shù)的連續(xù)性§1連續(xù)性概念教學(xué)內(nèi)容:教學(xué)重點:函數(shù)在一點連續(xù)的概念教學(xué)難點:間斷點的分類問題的提出:(1)自然界中有許多現(xiàn)象,如氣溫的變化,河水的流動,植物的生長等等,都是連續(xù)地變化著的.這種現(xiàn)象在函數(shù)關(guān)系上的反應(yīng),就是函數(shù)的連續(xù)性.
2025-08-01 13:34
【總結(jié)】....第四章 微分中值定理和導(dǎo)數(shù)的應(yīng)用 一、考核要求 Ⅰ知道羅爾定理成立的條件和結(jié)論,知道拉格朗日中值定理成立的條件和結(jié)論?! 、蚰茏R別各種類型的未定式,并會用洛必達法則求它們的極限?! 、髸袆e函數(shù)的單調(diào)性,會用單調(diào)性求函數(shù)的單調(diào)區(qū)間,并會利用函數(shù)的單調(diào)性證明簡單的不等式。
2025-06-16 17:19
【總結(jié)】NetworkOptimizationExpertTeam知識的超市,生命的狂歡今日贈言向日葵告訴我們,只要面對著陽光努力向上,日子就會變得單純而美好。NetworkOptimizationExpertTeam知識的超市,生命的狂歡復(fù)習(xí)引入:問題1:怎樣利用函數(shù)單調(diào)性的定義來討論其在定義域的單調(diào)性1.一般地,對
2025-10-25 20:18