【總結(jié)】1xy?)(xy??y1x2x*x0x)(00xy??)(11xy??10xy?21xy?)(12xy??x方程求根理學(xué)院張立杰《數(shù)值分析》第六講2abxabax?????根:00002????acbxax§從多項(xiàng)式方程求根說起第六章
2025-01-21 20:44
【總結(jié)】??方法收斂的充分條件、定理SOR9如果設(shè),bAx???1.;ULDAA???為對(duì)稱正定矩陣??2.20???.迭代法收斂的則解SORbAx?、例1.:,是收斂的求解方程組塞德爾迭代法用高斯證明為非奇異矩陣設(shè)bAxAAT??證明:,)(AAAATTT?,0)()()(,????AxAxxAAx
2025-01-15 15:46
【總結(jié)】第五章函數(shù)近似計(jì)算的插值法Hermite插值法§Hermite插值法§Lagrange插值雖然構(gòu)造比較簡(jiǎn)單,但插值曲線只是在節(jié)點(diǎn)處與原函數(shù)較吻合,若還要求在節(jié)點(diǎn)處兩者相切,即倒數(shù)值相等,使之與被插函數(shù)的”密切”程度更好,這就要用到帶導(dǎo)數(shù)的插值.0101(),,,,,
2025-08-01 20:29
【總結(jié)】第二章插值與擬合第二章函數(shù)的插值學(xué)習(xí)目標(biāo):掌握多項(xiàng)式插值的Lagrange插值公式、牛頓插值公式等,等距節(jié)點(diǎn)插值、差分、差商、重節(jié)點(diǎn)差商與埃米特插值。重點(diǎn)是多項(xiàng)式插值方法。第二章插值與擬合Hermite插值多項(xiàng)式均差和Newton插值多項(xiàng)式逐次線性插值Lagr
2025-05-14 09:49
【總結(jié)】插值法Newton插值32插值法插值法插值法的一般理論Lagrange插值31分段低次插值34實(shí)際問題期望試驗(yàn)數(shù)據(jù)觀測(cè)數(shù)據(jù)期望內(nèi)在規(guī)律期望函數(shù)關(guān)系一、數(shù)學(xué)的期望插值法概述實(shí)驗(yàn)數(shù)據(jù)是否存在內(nèi)在規(guī)律?實(shí)驗(yàn)數(shù)
2025-01-15 12:35
【總結(jié)】1第7章非線性方程求根方程求根與二分法引言0)(?xf()本章主要討論單變量非線性方程的求根問題,這里].,[)(,RbaCxfx??一類特殊的問題是多項(xiàng)式方程),0()(01110????????aaxaxaxaxfnnnn?()的
2025-01-20 00:45
【總結(jié)】插值與擬合一、插值1、插值問題:不知道某一函數(shù)f(x)在待定范圍[a,b]上的具體表達(dá)式,而只能通過實(shí)驗(yàn)測(cè)量得到該函數(shù)在一系列點(diǎn)a≤x1,x2,...,xn≤b上的值y0,y1,y2,...,yn,需要找一個(gè)簡(jiǎn)單的函數(shù)P(x)來(lái)近似地代替f(x),要求滿足:P(xi)=yi(i=1,2,..
2025-01-01 05:39
【總結(jié)】1代數(shù)插值基礎(chǔ)介紹拉格朗日插值公式拉格朗日插值的誤差分析牛頓插值三次Hermite插值拉格朗日插值與牛頓插值20120(1)復(fù)雜函數(shù)的計(jì)算;(2)函數(shù)表中非表格點(diǎn)計(jì)算(3)光滑曲線的繪制;(4)提高照片分辯率算法(5)定積分的離散化處理;(6)微分
2025-09-19 00:54
【總結(jié)】數(shù)值分析第二章插值法均差與牛頓插值公式Lagrange插值多項(xiàng)式的缺點(diǎn))(xlj??????njiiijixxxx0)()(nj,,2,1,0??我們知道,Lagrange插值多項(xiàng)式的插值基函數(shù)為理論分析中很方便,但是當(dāng)插值節(jié)點(diǎn)增減時(shí)全部插值基函數(shù)就要隨之變化,整個(gè)公式也
2025-01-15 02:30
【總結(jié)】?引言?拉格朗日插值?差商與牛頓插值?差分與等距節(jié)點(diǎn)插值*?埃爾米特插值?分段低次插值?樣條插值第5章插值法§1引言一、問題背景?)(xfy?),,1,0()(nixfyii???),,1,0()()()(ni
2025-01-12 08:03
【總結(jié)】2021/6/161第二章插值法2021/6/162iiijjijiilxlbx?????11?????????????nnnnnnaaaaaaaaaA???????212222111211bAx
2025-05-14 01:54
【總結(jié)】1數(shù)學(xué)建模與數(shù)學(xué)實(shí)驗(yàn)插值2實(shí)驗(yàn)?zāi)康膶?shí)驗(yàn)內(nèi)容2、掌握用數(shù)學(xué)軟件包求解插值問題。1、了解插值的基本內(nèi)容。[1]一維插值[2]二維插值[3]實(shí)驗(yàn)作業(yè)3拉格朗日插值分段線性插值三次樣條插值一維插值
2025-05-05 18:17
【總結(jié)】計(jì)算方法光信息插值方法?插值多項(xiàng)式定義?插值多項(xiàng)式的存在唯一性?插值余項(xiàng)?基函數(shù)構(gòu)造拉氏插值多項(xiàng)式?計(jì)算機(jī)實(shí)現(xiàn)?分段線性插值?其它插值方法介紹引例及問題綜述?引例1血藥濃度問題為試驗(yàn)?zāi)撤N新藥的療效,醫(yī)生對(duì)某人用快速靜脈注射方式一次注入該藥300mg后,在一定時(shí)
2025-05-13 04:10
【總結(jié)】課程設(shè)計(jì)說明書課程名稱:數(shù)值計(jì)算與算法設(shè)計(jì)課程設(shè)計(jì)題目:水塔流量問題的插值與擬合解法院系:理學(xué)院_專業(yè)班級(jí):_應(yīng)用數(shù)學(xué)2005-2學(xué)號(hào):_200513795_學(xué)生姓名:__李坷坷__指導(dǎo)教師:__許峰___2008年7月11日安徽理工大學(xué)
2025-01-14 19:51
【總結(jié)】上頁(yè)下頁(yè)在工程技術(shù)與科學(xué)研究中,常會(huì)遇到函數(shù)表達(dá)式過于復(fù)雜而不便于計(jì)算,且又需要計(jì)算眾多點(diǎn)處的函數(shù)值;或已知由實(shí)驗(yàn)(測(cè)量)得到的某一函數(shù)y=f(x)在區(qū)間[a,b]中互異的n+1個(gè)xi(i=0,1,...,n)處的值yi=f(xi)(i=0,1,...,n),需要構(gòu)造一個(gè)簡(jiǎn)單易算的函數(shù)P(x)作為y=f(x)的近似表
2025-04-29 02:53