【總結(jié)】第五章函數(shù)近似計(jì)算的插值法Hermite插值法§Hermite插值法§Lagrange插值雖然構(gòu)造比較簡(jiǎn)單,但插值曲線只是在節(jié)點(diǎn)處與原函數(shù)較吻合,若還要求在節(jié)點(diǎn)處兩者相切,即倒數(shù)值相等,使之與被插函數(shù)的”密切”程度更好,這就要用到帶導(dǎo)數(shù)的插值.0101(),,,,,
2025-08-01 20:29
【總結(jié)】科學(xué)和工程計(jì)算第4章插值法插值法?插值法是一種古老的數(shù)學(xué)方法,早在一千多年前的隋唐時(shí)期定制歷法時(shí)就廣泛應(yīng)用了二次插值。劉焯將等距節(jié)點(diǎn)的二次插值應(yīng)用于天文計(jì)算。?插值理論卻是在17世紀(jì)微積分產(chǎn)生后才逐步發(fā)展起來(lái)的,Newton插值公式理論是當(dāng)時(shí)的重要成果。?由于計(jì)算機(jī)的使用以及航空、造船、精密儀器的加工,插值法在理論和
2025-03-22 02:20
【總結(jié)】第2章插值法在科學(xué)研究與工程技術(shù)中,常常遇到這樣的問(wèn)題:由實(shí)驗(yàn)或測(cè)量得到一批離散樣點(diǎn),要求作出一條通過(guò)這些點(diǎn)的光滑曲線,以便滿足設(shè)計(jì)要求或進(jìn)行加工。反映在數(shù)學(xué)上,即已知函數(shù)在一些點(diǎn)上的值,尋求它的分析表達(dá)式。此外,一些函數(shù)雖有表達(dá)式,但因式子復(fù)雜,不易計(jì)算其值和進(jìn)行理論分析,也需要構(gòu)造一個(gè)簡(jiǎn)單函數(shù)來(lái)近似它。解決這種問(wèn)題的方法有兩類(lèi):一類(lèi)是給出函數(shù)的一些樣點(diǎn),選定一個(gè)便于計(jì)算的函數(shù)形
2025-08-23 01:58
【總結(jié)】1數(shù)學(xué)建模與數(shù)學(xué)實(shí)驗(yàn)插值2實(shí)驗(yàn)?zāi)康膶?shí)驗(yàn)內(nèi)容2、掌握用數(shù)學(xué)軟件包求解插值問(wèn)題。1、了解插值的基本內(nèi)容。[1]一維插值[2]二維插值[3]實(shí)驗(yàn)作業(yè)3拉格朗日插值分段線性插值三次樣條插值一維插值
2025-05-05 18:17
【總結(jié)】朱立永北京航空航天大學(xué)數(shù)學(xué)與系統(tǒng)科學(xué)學(xué)院Email:Password:buaa2022答疑時(shí)間:星期一下午15:00-17:00答疑地點(diǎn):雙周:西配樓519室,單周:主南307第十五講Hermite插值第五章插值與逼近不少實(shí)際問(wèn)題不但要求在節(jié)點(diǎn)上函數(shù)值相等,而
2025-07-25 18:53
【總結(jié)】畢業(yè)論文題目:拉格朗日插值及中值定理的應(yīng)用湘潭大學(xué)畢業(yè)論文(設(shè)計(jì))任務(wù)書(shū)論文(設(shè)計(jì))題目:拉格朗日插值及中值定理的應(yīng)用
2025-06-22 21:35
2025-08-16 20:47
【總結(jié)】§牛頓插值(Newton’sInterpolation)Lagrange插值雖然易算,但若要增加一個(gè)節(jié)點(diǎn)時(shí),全部基函數(shù)li(x)都需要重新計(jì)算。也就是說(shuō),Lagrange插值不具有繼承性。能否重新在Pn中尋找新的基函數(shù)?希望每加一個(gè)節(jié)點(diǎn)時(shí),只在原有插值的基礎(chǔ)上附加部分計(jì)算量(或者說(shuō)添加一項(xiàng))即可。
2025-10-05 05:55
【總結(jié)】空間插值方法基于ArcMap主要內(nèi)容?概念及分類(lèi)?主要步驟概念及分類(lèi)?概念?重要性?分類(lèi)概念重要性重要性?從采樣點(diǎn)位數(shù)據(jù),到整個(gè)區(qū)域的應(yīng)用。?用已知樣點(diǎn)預(yù)測(cè)未知樣點(diǎn)(不僅僅是自身)基本
2025-05-04 07:26
【總結(jié)】第五章插值法在實(shí)際科學(xué)計(jì)算中常會(huì)出現(xiàn)這樣的情況,由于函數(shù)的解析表達(dá)式過(guò)于復(fù)雜不便計(jì)算,但是需要計(jì)算多個(gè)點(diǎn)處的函數(shù)值;或者函數(shù)的解析表達(dá)式未知,僅知道它在區(qū)間內(nèi)n+1個(gè)互異點(diǎn)處對(duì)應(yīng)的函數(shù)值,需要構(gòu)造一個(gè)簡(jiǎn)單函數(shù)作為函數(shù)
2025-05-13 04:09
【總結(jié)】第四章插值與基函數(shù)重新回憶虛功方程它是解釋有限元法的思想基礎(chǔ)。注意到未知位移是通過(guò)插值函數(shù)用結(jié)點(diǎn)位移表示實(shí)虛[N]是關(guān)鍵。故可以說(shuō)采用插值函數(shù)位移模式是有限元法的一個(gè)重要特點(diǎn)。這樣提高插值精度是提高有限元法精度的重要手段。換言之,用什么單元的問(wèn)
2025-08-15 23:28
【總結(jié)】插值法基本思路張興元2022年8月ComputationalMethods西南交通大學(xué)峨眉校區(qū)基礎(chǔ)課部數(shù)學(xué)教研室2022年一元多項(xiàng)式插值?教學(xué)內(nèi)容?插值問(wèn)題?插值問(wèn)題
2024-12-08 04:32
【總結(jié)】iiijjijiilxlbx?????11?????????????nnnnnnaaaaaaaaaA???????212222111211bAx?ni,,3,2??Newton插值法§
2025-05-01 12:05
【總結(jié)】無(wú)關(guān)只與節(jié)點(diǎn)有關(guān),與iniiiiiniiiyxxxxxxxxxxxxxxxxxl)())(()()())(()()(110110?????????????????????????????6102110933636
2025-02-21 12:45
【總結(jié)】數(shù)值分析第二章插值法Hermite插值,,,,,,,)(1010nnyyybxxxaxf??處的函數(shù)值為在節(jié)點(diǎn)設(shè)??值函數(shù)上的具有一階導(dǎo)數(shù)的插的在區(qū)間為設(shè)],[)()(baxfxP處必須滿足在節(jié)點(diǎn)顯然nxxxxP,,,)(10?)(],[)()1(一階光滑度上具有一階導(dǎo)數(shù)在若要求baxPiiiyxfxP??)()
2025-08-05 15:40