【總結(jié)】牛頓插值法的分析與應(yīng)用學(xué)生姓名:班級(jí):學(xué)號(hào):
2025-06-27 07:09
【總結(jié)】iiijjijiilxlbx?????11?????????????nnnnnnaaaaaaaaaA???????212222111211bAx?ni,,3,2??Newton插值法§
2025-05-01 12:05
【總結(jié)】第五章函數(shù)近似計(jì)算的插值法Hermite插值法§Hermite插值法§Lagrange插值雖然構(gòu)造比較簡(jiǎn)單,但插值曲線只是在節(jié)點(diǎn)處與原函數(shù)較吻合,若還要求在節(jié)點(diǎn)處兩者相切,即倒數(shù)值相等,使之與被插函數(shù)的”密切”程度更好,這就要用到帶導(dǎo)數(shù)的插值.0101(),,,,,
2025-08-01 20:29
【總結(jié)】無關(guān)只與節(jié)點(diǎn)有關(guān),與iniiiiiniiiyxxxxxxxxxxxxxxxxxl)())(()()())(()()(110110?????????????????????????????6102110933636
2025-02-21 12:45
【總結(jié)】12:282021/11/101/37§3插值法與曲線擬合實(shí)驗(yàn)數(shù)據(jù)統(tǒng)計(jì)處理插值法(Lagrange插值法)曲線擬合(最小二乘法)平行試驗(yàn)數(shù)據(jù)處理,誤差分析。根據(jù)實(shí)驗(yàn)測(cè)定的離散數(shù)據(jù),求未測(cè)的某點(diǎn)數(shù)據(jù)。根據(jù)實(shí)驗(yàn)測(cè)定的離散數(shù)據(jù),擬合曲線,分析數(shù)據(jù)規(guī)律,求函數(shù)表達(dá)式。
2025-10-05 10:43
【總結(jié)】數(shù)值分析第二章插值法Hermite插值,,,,,,,)(1010nnyyybxxxaxf??處的函數(shù)值為在節(jié)點(diǎn)設(shè)??值函數(shù)上的具有一階導(dǎo)數(shù)的插的在區(qū)間為設(shè)],[)()(baxfxP處必須滿足在節(jié)點(diǎn)顯然nxxxxP,,,)(10?)(],[)()1(一階光滑度上具有一階導(dǎo)數(shù)在若要求baxPiiiyxfxP??)()
2025-08-05 15:40
【總結(jié)】拉格朗日插值法問題的提出????01(),,,,,(),(0,1,,)()niyfxababxxxyfxinfx???在實(shí)際問題中常遇到這樣的函數(shù),其在某個(gè)區(qū)間上是存在的。但是,通過觀察或測(cè)量或?qū)嶒?yàn)只能得到在區(qū)間上有限個(gè)離散點(diǎn)上
2025-05-09 02:07
【總結(jié)】第6章插值與逼近§1多項(xiàng)式插值問題設(shè)函數(shù)y=?(x)在區(qū)間[a,b]上連續(xù),給定n+1個(gè)點(diǎn)a?x0x1…xn?b()已知?(xk)=yk(k=0,1,…,n),在函數(shù)類P中尋找一函數(shù)?(x)作為?(x)的近似表達(dá)式,
2025-01-19 10:05
【總結(jié)】1第2章插值法2引言Lagrange插值均差與Newton插值多項(xiàng)式Hermite插值分段低次插值三次樣條插值3引言設(shè)函數(shù)在區(qū)間上有定義,且已知在點(diǎn))(xfy?],[ba上的值
2025-01-19 10:08
【總結(jié)】第五章函數(shù)近似計(jì)算的插值法Newton插值法§均差(也稱為差商)是數(shù)值方法中的一個(gè)重要概念,它可以反映出列表函數(shù)的性質(zhì),并能對(duì)Lagrange插值公式給出新的表達(dá)形式,這就是Newton插值。一、均差二、Newton插值公式三、等距節(jié)點(diǎn)的Newton插值公式四、Newton插值
【總結(jié)】第五章插值法在實(shí)際科學(xué)計(jì)算中常會(huì)出現(xiàn)這樣的情況,由于函數(shù)的解析表達(dá)式過于復(fù)雜不便計(jì)算,但是需要計(jì)算多個(gè)點(diǎn)處的函數(shù)值;或者函數(shù)的解析表達(dá)式未知,僅知道它在區(qū)間內(nèi)n+1個(gè)互異點(diǎn)處對(duì)應(yīng)的函數(shù)值,需要構(gòu)造一個(gè)簡(jiǎn)單函數(shù)作為函數(shù)
2025-05-13 04:09
【總結(jié)】第二章插值與擬合第二章函數(shù)的插值學(xué)習(xí)目標(biāo):掌握多項(xiàng)式插值的Lagrange插值公式、牛頓插值公式等,等距節(jié)點(diǎn)插值、差分、差商、重節(jié)點(diǎn)差商與埃米特插值。重點(diǎn)是多項(xiàng)式插值方法。第二章插值與擬合Hermite插值多項(xiàng)式均差和Newton插值多項(xiàng)式逐次線性插值Lagr
2025-05-14 09:49
【總結(jié)】第4章數(shù)值積分與數(shù)值微分1數(shù)值積分的基本概念實(shí)際問題當(dāng)中常常需要計(jì)算定積分。在微積分中,我們熟知,牛頓—萊布尼茲公式是計(jì)算定積分的一種有效工具,在理論和實(shí)際計(jì)算上有很大作用。對(duì)定積分,若在區(qū)間上連續(xù),且的原函數(shù)為,則可計(jì)算定積分似乎問題已經(jīng)解決,其實(shí)不然。如1)是由測(cè)量或數(shù)值計(jì)算給出數(shù)據(jù)表時(shí),Newton-Leibnitz公式無法應(yīng)用。2)許多形式上很簡(jiǎn)單的函數(shù),
2025-08-23 01:55
【總結(jié)】數(shù)值分析實(shí)驗(yàn)報(bào)告 《數(shù)值分析》實(shí)驗(yàn)報(bào)告實(shí)驗(yàn)序號(hào):實(shí)驗(yàn)五實(shí)驗(yàn)名稱:分段線性插值法1、實(shí)驗(yàn)?zāi)康模弘S著插值節(jié)點(diǎn)的增加,插值多項(xiàng)式的插值多項(xiàng)式的次數(shù)也增加,而對(duì)于高次的插值容易帶來劇烈的震蕩,帶來數(shù)值的不穩(wěn)定(Runge現(xiàn)
2025-06-26 08:10
【總結(jié)】§牛頓插值(Newton’sInterpolation)Lagrange插值雖然易算,但若要增加一個(gè)節(jié)點(diǎn)時(shí),全部基函數(shù)li(x)都需要重新計(jì)算。也就是說,Lagrange插值不具有繼承性。能否重新在Pn中尋找新的基函數(shù)?希望每加一個(gè)節(jié)點(diǎn)時(shí),只在原有插值的基礎(chǔ)上附加部分計(jì)算量(或者說添加一項(xiàng))即可。
2025-10-05 05:55