【總結(jié)】課程設(shè)計(jì)說明書課程名稱:數(shù)值計(jì)算與算法設(shè)計(jì)課程設(shè)計(jì)題目:水塔流量問題的插值與擬合解法院系:理學(xué)院_專業(yè)班級(jí):_應(yīng)用數(shù)學(xué)2021-2學(xué)號(hào):_202113795_學(xué)生姓名:__李坷坷__指導(dǎo)教師:__許
2025-06-07 13:47
【總結(jié)】第五章函數(shù)近似計(jì)算的插值法Newton插值法§均差(也稱為差商)是數(shù)值方法中的一個(gè)重要概念,它可以反映出列表函數(shù)的性質(zhì),并能對(duì)Lagrange插值公式給出新的表達(dá)形式,這就是Newton插值。一、均差二、Newton插值公式三、等距節(jié)點(diǎn)的Newton插值公式四、Newton插值
2025-08-01 20:29
【總結(jié)】2022/1/31第5章信號(hào)的抽取與插值為簡(jiǎn)單起見,很多時(shí)候我們?cè)谟懻撔盘?hào)處理的各種理論、算法及實(shí)現(xiàn)這些算法的系統(tǒng)時(shí),都把抽樣頻率視為恒定值,即在一個(gè)數(shù)字系統(tǒng)中只有一個(gè)抽樣率。但是,在實(shí)際工作中,我們經(jīng)常會(huì)遇到抽樣率轉(zhuǎn)換的問題。一方面,要求一個(gè)數(shù)字系統(tǒng)能工作在“多抽樣率(multirate)”狀態(tài),以適應(yīng)不同抽樣信號(hào)的需要;另一方面
2024-12-07 23:29
【總結(jié)】2021/6/161第二章插值法均差與牛頓插值公式§2021/6/162均差及其性質(zhì)§)(xlj??????njiiijixxxx0)()(nj,,2,1,0??我們知道,拉格朗日插值多項(xiàng)式的插值基函數(shù)為形式上太復(fù)雜,計(jì)算量很大,并且重復(fù)計(jì)
2025-05-13 04:10
【總結(jié)】第五章函數(shù)近似計(jì)算的插值法Hermite插值法§Hermite插值法§Lagrange插值雖然構(gòu)造比較簡(jiǎn)單,但插值曲線只是在節(jié)點(diǎn)處與原函數(shù)較吻合,若還要求在節(jié)點(diǎn)處兩者相切,即倒數(shù)值相等,使之與被插函數(shù)的”密切”程度更好,這就要用到帶導(dǎo)數(shù)的插值.0101(),,,,,
【總結(jié)】第二章插值與擬合第二章函數(shù)的插值學(xué)習(xí)目標(biāo):掌握多項(xiàng)式插值的Lagrange插值公式、牛頓插值公式等,等距節(jié)點(diǎn)插值、差分、差商、重節(jié)點(diǎn)差商與埃米特插值。重點(diǎn)是多項(xiàng)式插值方法。第二章插值與擬合Hermite插值多項(xiàng)式均差和Newton插值多項(xiàng)式逐次線性插值Lagr
2025-05-14 09:49
【總結(jié)】1代數(shù)插值基礎(chǔ)介紹拉格朗日插值公式拉格朗日插值的誤差分析牛頓插值三次Hermite插值拉格朗日插值與牛頓插值20120(1)復(fù)雜函數(shù)的計(jì)算;(2)函數(shù)表中非表格點(diǎn)計(jì)算(3)光滑曲線的繪制;(4)提高照片分辯率算法(5)定積分的離散化處理;(6)微分
2025-09-19 00:54
【總結(jié)】12:282021/11/101/37§3插值法與曲線擬合實(shí)驗(yàn)數(shù)據(jù)統(tǒng)計(jì)處理插值法(Lagrange插值法)曲線擬合(最小二乘法)平行試驗(yàn)數(shù)據(jù)處理,誤差分析。根據(jù)實(shí)驗(yàn)測(cè)定的離散數(shù)據(jù),求未測(cè)的某點(diǎn)數(shù)據(jù)。根據(jù)實(shí)驗(yàn)測(cè)定的離散數(shù)據(jù),擬合曲線,分析數(shù)據(jù)規(guī)律,求函數(shù)表達(dá)式。
2025-10-05 10:43
【總結(jié)】數(shù)值分析第二章插值法均差與牛頓插值公式Lagrange插值多項(xiàng)式的缺點(diǎn))(xlj??????njiiijixxxx0)()(nj,,2,1,0??我們知道,Lagrange插值多項(xiàng)式的插值基函數(shù)為理論分析中很方便,但是當(dāng)插值節(jié)點(diǎn)增減時(shí)全部插值基函數(shù)就要隨之變化,整個(gè)公式也
2025-01-15 02:30
【總結(jié)】?引言?拉格朗日插值?差商與牛頓插值?差分與等距節(jié)點(diǎn)插值*?埃爾米特插值?分段低次插值?樣條插值第5章插值法§1引言一、問題背景?)(xfy?),,1,0()(nixfyii???),,1,0()()()(ni
2025-01-12 08:03
【總結(jié)】2021/6/161第二章插值法2021/6/162iiijjijiilxlbx?????11?????????????nnnnnnaaaaaaaaaA???????212222111211bAx
2025-05-14 01:54
【總結(jié)】1數(shù)學(xué)建模與數(shù)學(xué)實(shí)驗(yàn)插值2實(shí)驗(yàn)?zāi)康膶?shí)驗(yàn)內(nèi)容2、掌握用數(shù)學(xué)軟件包求解插值問題。1、了解插值的基本內(nèi)容。[1]一維插值[2]二維插值[3]實(shí)驗(yàn)作業(yè)3拉格朗日插值分段線性插值三次樣條插值一維插值
2025-05-05 18:17
【總結(jié)】計(jì)算方法光信息插值方法?插值多項(xiàng)式定義?插值多項(xiàng)式的存在唯一性?插值余項(xiàng)?基函數(shù)構(gòu)造拉氏插值多項(xiàng)式?計(jì)算機(jī)實(shí)現(xiàn)?分段線性插值?其它插值方法介紹引例及問題綜述?引例1血藥濃度問題為試驗(yàn)?zāi)撤N新藥的療效,醫(yī)生對(duì)某人用快速靜脈注射方式一次注入該藥300mg后,在一定時(shí)
【總結(jié)】上頁下頁在工程技術(shù)與科學(xué)研究中,常會(huì)遇到函數(shù)表達(dá)式過于復(fù)雜而不便于計(jì)算,且又需要計(jì)算眾多點(diǎn)處的函數(shù)值;或已知由實(shí)驗(yàn)(測(cè)量)得到的某一函數(shù)y=f(x)在區(qū)間[a,b]中互異的n+1個(gè)xi(i=0,1,...,n)處的值yi=f(xi)(i=0,1,...,n),需要構(gòu)造一個(gè)簡(jiǎn)單易算的函數(shù)P(x)作為y=f(x)的近似表
2025-04-29 02:53
【總結(jié)】第四章插值與基函數(shù)重新回憶虛功方程它是解釋有限元法的思想基礎(chǔ)。注意到未知位移是通過插值函數(shù)用結(jié)點(diǎn)位移表示實(shí)虛[N]是關(guān)鍵。故可以說采用插值函數(shù)位移模式是有限元法的一個(gè)重要特點(diǎn)。這樣提高插值精度是提高有限元法精度的重要手段。換言之,用什么單元的問
2025-08-15 23:28