【總結(jié)】平面向量基本定理及坐標(biāo)運(yùn)算1.選擇題1.若向量=(1,2),=(3,4),則=()A(4,6)B(-4,-6)C(-2,-2)D(2,2)2.若向量a=(x-2,3)與向量b=(1,y+2)相等,則 ()A.x=1,y=3 B.x=3,y=1 C.x=1,y=-5 D.x=5,y=-13.下列
2025-03-25 01:22
【總結(jié)】平面向量基本定理如果是同一平面內(nèi)的兩個(gè)不共線向量,那么對(duì)于這一平面內(nèi)的任意向量有且只有一對(duì)實(shí)數(shù)使.12ee,a,12,??,1122aee????不共線的向量叫做表示這一平面內(nèi)所有向量的一組基底.12e,e向量的
2024-11-19 17:33
【總結(jié)】基礎(chǔ)自主回扣命題熱點(diǎn)突破知能綜合檢測(cè)目錄下一頁(yè)上一頁(yè)末頁(yè)首頁(yè)章首課前練習(xí):已知正△ABC的邊長(zhǎng)為2,圓O的半徑為1,PQ為圓O的任意一條直徑。(1)判斷的值是否會(huì)
2025-07-23 07:12
【總結(jié)】§2.平面向量的正交分解及坐標(biāo)表示【學(xué)習(xí)目標(biāo)、細(xì)解考綱】1、理解平面向量的正交分解。2、聯(lián)系直角坐標(biāo)系,研究向量正交分解的坐標(biāo)運(yùn)算?!局R(shí)梳理、雙基再現(xiàn)】1、平面向量的正交分解把一個(gè)向量分解為_(kāi)____________,叫做把向量正交分解。2、向量的坐標(biāo)表示在平面直角坐標(biāo)系中,分別取與x軸、
2024-12-02 08:37
【總結(jié)】平面向量的正交分解及坐標(biāo)表示平面向量的坐標(biāo)運(yùn)算1.下列說(shuō)法正確的有()①向量的坐標(biāo)即此向量終點(diǎn)的坐標(biāo).②位置不同的向量其坐標(biāo)可能相同.③一個(gè)向量的坐標(biāo)等于它的終點(diǎn)坐標(biāo)減去它的始點(diǎn)坐標(biāo).④相等的向量坐標(biāo)一定相同.A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)解析:向量的坐標(biāo)是其終點(diǎn)坐標(biāo)減去起點(diǎn)對(duì)
2024-11-19 17:32
【總結(jié)】平面向量的正交分解及坐標(biāo)表示平面向量的坐標(biāo)運(yùn)算考查知識(shí)點(diǎn)及角度難易度及題號(hào)基礎(chǔ)中檔稍難平面向量的坐標(biāo)表示1、2、46平面向量的坐標(biāo)運(yùn)算3、57、8綜合問(wèn)題9、10111.若O(0,0),A(1,2),且OA′→=2OA→,則A′點(diǎn)坐標(biāo)為()A.(1,4)
【總結(jié)】平面向量單元復(fù)習(xí)題(一)一、選擇題(本大題共10小題,每小題5分,共50分)1.下列命題正確的是()a,b滿足|a|>|b|且a與b同向,則a>ba、b,
2025-01-09 16:02
【總結(jié)】第2節(jié)平面向量基本定理及其坐標(biāo)表示(對(duì)應(yīng)學(xué)生用書(shū)第61~62頁(yè))1.向量的夾角(1)定義:已知兩個(gè)非零向量a和b,如圖,作OA―→=a,OB―→=b,則∠AOB=θ叫做向量a與b的夾角,也可記作〈a,b〉=θ.(2)范圍:向量夾角θ的范圍是[0,π],a與b同向時(shí),夾角θ
2024-11-12 01:35
【總結(jié)】.第二章平面向量一、選擇題(第1題)1.在△ABC中,AB=AC,D,E分別是AB,AC的中點(diǎn),則().A.與共線 B.與共線C.與相等 D.與相等2.下列命題正確的是().A.向量與是兩平行向量B.若a,b都是單位向量,則a=bC.若=,則A,B,C,D四點(diǎn)構(gòu)成
2025-08-05 19:24
【總結(jié)】......第二章平面向量一、選擇題(第1題)1.在△ABC中,AB=AC,D,E分別是AB,AC的中點(diǎn),則().A.與共線 B.與共線C.與相等
2025-06-23 01:37
【總結(jié)】§2.平面向量共線的坐標(biāo)表示【學(xué)習(xí)目標(biāo)、細(xì)解考綱】1、在理解向量共線的概念的基礎(chǔ)上,學(xué)習(xí)用坐標(biāo)表示向量共線的條件。2、利用向量共線的坐標(biāo)表示解決有關(guān)問(wèn)題。【知識(shí)梳理、雙基再現(xiàn)】1、兩向量平行(共線)的條件若//(0)abb?則存在唯一實(shí)數(shù)使//ab?;反之,存在唯一實(shí)數(shù)?。使//
2024-11-30 13:46
【總結(jié)】第五章平面向量第五章第二節(jié)平面向量基本定理及向量的坐標(biāo)運(yùn)算高考目標(biāo)導(dǎo)航課前自主導(dǎo)學(xué)課堂典例講練3課后強(qiáng)化作業(yè)4高考目標(biāo)導(dǎo)航考綱要求1.了解平面向量的基本定理及其意義.2.掌握平面向量的正交分解及其坐標(biāo)表示.3.會(huì)用坐標(biāo)表示平面向量的加法、減法與數(shù)乘運(yùn)算.4.理解用坐標(biāo)表
2024-11-18 18:06
【總結(jié)】課題坐標(biāo)的標(biāo)示及運(yùn)算教學(xué)目標(biāo)知識(shí)與技能了解平面向量的正交分解,掌握向量的坐標(biāo)表示.過(guò)程與方法掌握兩個(gè)向量和、差及數(shù)乘向量的坐標(biāo)運(yùn)算法則.情感態(tài)度價(jià)值觀正確理解向量坐標(biāo)的概念,要把點(diǎn)的坐標(biāo)與向量的坐標(biāo)區(qū)分開(kāi)來(lái).重點(diǎn)溝通向量“數(shù)”與“形”的特征,使向
【總結(jié)】第一篇:[教案精品](二) 2.3.3平面向量的坐標(biāo)運(yùn)算教學(xué)目的:(1)理解平面向量的坐標(biāo)的概念;(2)掌握平面向量的坐標(biāo)運(yùn)算;(3)會(huì)根據(jù)向量的坐標(biāo),:平面向量的坐標(biāo)運(yùn)算教學(xué)難點(diǎn):: 一、復(fù)習(xí)引...
2024-11-07 00:13
【總結(jié)】向量的坐標(biāo)表示平面向量基本定理一、填空題1.若e1,e2是平面內(nèi)的一組基底,則下列四組向量能作為平面向量的基底的是________.①e1-e2,e2-e1②2e1+e2,e1+2e2③2e2-3e1,6e1-4e2④e1+e2,e1-e22.下面三種說(shuō)法中,正確的是________.①一個(gè)平面
2024-12-05 10:15