【導(dǎo)讀】所圍成的圖形計(jì)算由兩條拋物線例xyxy??連續(xù),且計(jì)算它的面積。π]2,0[,:的變化區(qū)間為在此段螺線上解?轉(zhuǎn)一周而成的立體,這直線叫做旋轉(zhuǎn)軸.例9計(jì)算由擺線的一拱y=0. 所圍成的圖形分別繞x軸,y軸旋轉(zhuǎn)而成的旋轉(zhuǎn)體積.
【總結(jié)】人教課標(biāo)A版數(shù)學(xué)選修2-2定積分在物理中的應(yīng)用定積分的簡單應(yīng)用:Oab()vvt?tvit設(shè)物體運(yùn)動的速度v?v(t)(v(t)≥0),則此物體在時(shí)間區(qū)間[a,b]內(nèi)運(yùn)動的路程s為()basvtdt??一、變速直線運(yùn)動的路程例1一輛汽車的速度——時(shí)間
2025-01-13 21:15
【總結(jié)】回顧曲邊梯形求面積的問題??badxxfA)(第八節(jié)定積分的幾何應(yīng)用曲邊梯形由連續(xù)曲線)(xfy?)0)((?xf、x軸與兩條直線ax?、bx?所圍成。abxyo)(xfy?abxyo)(xfy?提示若用A?表示任一小區(qū)間],[xx
2025-04-21 04:48
【總結(jié)】16-7定積分在經(jīng)濟(jì)學(xué)中的應(yīng)用2總成本=固定成本+可變成本)(qC0C)(1qC平均成本(單位成本)=qqCC)(10?收益=價(jià)格×銷量,即R(Q)=PQ.利潤=總收益-總成本,即L(Q)=R(Q)-C(Q)
2025-05-15 07:07
【總結(jié)】§定積分在物理上的應(yīng)用由物理學(xué)知道,在水深為h處的壓強(qiáng)為hp??,這里?是水的比重.如果有一面積為A的平板水平地放置在水深為h處,那么,平板一側(cè)所受的水壓力為ApP??.如果平板垂直放置在水中,由于水深不同的點(diǎn)處壓強(qiáng)p不相等,平板一側(cè)所受的水壓力就不能直接使用此公式,而采用“元素法”
2024-09-01 14:19
【總結(jié)】第八節(jié)定積分的幾何應(yīng)用舉例一、平面圖形的面積二、體積三、平面曲線的弧長一、平面圖形的面積1、直角坐標(biāo)系情形設(shè)曲線y=f(x)(x?0)與直線x=a,x=b(ab)及x軸所圍曲邊梯形的面積為A,則xyo)(xfy?abxxxd?
2025-04-29 05:41
【總結(jié)】在幾何中的應(yīng)用1、定積分的幾何意義:Oxyaby?f(x)x=a、x=b與x軸所圍成的曲邊梯形的面積。xyOaby?f(x)當(dāng)f(x)?0時(shí),由y?f(x)、x?a、x?b與x軸所圍成的曲邊梯形位于x軸的下方,一、復(fù)習(xí)引入鞏固練習(xí)利用定積分的幾何意義
2025-04-29 01:46
【總結(jié)】一、定積分的元素法二、平面圖形的面積第七節(jié)定積分的幾何應(yīng)用三、旋轉(zhuǎn)體的體積四、平行截面面積已知的立體的體積五、小結(jié)回顧曲邊梯形求面積的問題()dbaAfxx??一、定積分的元素法曲邊梯形由連續(xù)曲線)(xfy?)0)((?xf、x軸與兩條直線ax?、bx?所圍
2024-08-20 16:42
【總結(jié)】第八節(jié)定積分的幾何應(yīng)用舉例一、元素法二、平面圖形的面積三、體積四、平面曲線的弧長回顧曲邊梯形求面積的問題??badxxfA)(一、元素法曲邊梯形由連續(xù)曲線)(xfy?)0)((?xf、x軸與兩條直線ax?、bx?所圍成。abxyo)(xfy?面
2024-12-08 01:13
【總結(jié)】二重積分在直角坐標(biāo)系下的計(jì)算二、典型例題一、二重積分計(jì)算公式三、利用對稱性簡化二重積分的計(jì)算想一想:能不能用定積分的方法來求曲頂柱體的體積?利用平行截面面積為已知的幾何體體積的計(jì)算方法xyzO0),(??yxfzD)(1xy??)(2xy??.x?xx曲頂柱
【總結(jié)】定積分的幾何應(yīng)用?badxxf)(利用定積分解決實(shí)際問題的關(guān)鍵:建立定積分的式子,即找出被積函數(shù)和積分區(qū)間。建立定積分式子的方法:微元法(又稱元素法)定積分微元法的實(shí)質(zhì):對能夠用定積分解決的實(shí)際問題,尋找其被積函數(shù)和積分區(qū)間的方法。定積分的定義表達(dá)式:()bafxdx?01lim(
2024-12-08 09:19
【總結(jié)】第二節(jié)換元積分法從不定積分的定義可以看出,求不定積分的問題實(shí)質(zhì)上就是求原函數(shù)的問題,而能直接求出原函數(shù)的函數(shù)畢竟是少數(shù)tan??cos?(1)dxxdxxxdxxx???????如本節(jié)介紹了利用換元的思想求下不定積分的兩種方法.第一換元法和第二換元法.(一或第湊一換元法微分法)
2024-07-29 21:13
【總結(jié)】定積分的概念-定積分的定義及其幾何意義主講:蔡承文定積分的定義及其幾何意義函數(shù)f(x)在[a,b]上的定積分01lim()niiifx??????課題引入新課講授實(shí)踐探究課堂小結(jié)課后鞏固非均勻分布總量計(jì)算方法課題引入新課講授
2024-08-14 05:40
【總結(jié)】第二節(jié)、二重積分的性質(zhì)假設(shè)以下各積分存在性質(zhì)1?????DDdyxfkdyxkf??),(),(k為常數(shù)性質(zhì)2?????????DDDdyxgDdyxfdyxgyxf???),(),()],(),([性質(zhì)3(可加性)???2121,DDDDD??且若(除分界線)??????
2024-10-11 12:29
【總結(jié)】第二節(jié)二重積分的計(jì)算一、二重積分在直角坐標(biāo)系下的計(jì)算二、二重積分在極坐標(biāo)系下的計(jì)算一、二重積分在直角坐標(biāo)系下的計(jì)算二重積分的計(jì)算主要是化為兩次定積分計(jì)算,簡稱為化為二次積分或累次積分.下面從二重積分的幾何意義來引出這種計(jì)算方法.在直角坐標(biāo)系中,如果用平行于兩個(gè)坐標(biāo)軸的兩組直線段,將區(qū)域D分割成n個(gè)小塊
2024-07-29 20:21
【總結(jié)】微積分在物理學(xué)上的應(yīng)用1引言微積分是數(shù)學(xué)的一個(gè)基本學(xué)科,內(nèi)容包括微分學(xué),積分學(xué),極限及其應(yīng)用,其中微分學(xué)包括導(dǎo)數(shù)的運(yùn)算,因此使速度,加速度等物理元素可以使用一套通用的符號來進(jìn)行討論。而在大學(xué)物理中,使用微積分去解決問題是及其普遍的。對于大學(xué)物理問題,可是使其化整為零,將其分成許多在較小的時(shí)間或空間里的局部問題來進(jìn)行分析。只要這些局部問題分的足夠小,足以使用簡單,可研究的方法來
2025-04-04 02:24