【導(dǎo)讀】x軸與兩條直線ax?上的窄曲邊梯形的面積,一小區(qū)間并記為],[dxxx?,求出相應(yīng)于這小區(qū)。的近似值.如果U?設(shè)U是與一個變量x的變化區(qū)間??例1計算由兩條拋物線xy?應(yīng)用定積分換元法得?當(dāng)a=b時得圓面積公式。平面圖形的面積.過原點及點)3,2(,且)(xf. 圍成的面積是另一條平。行線與y軸和曲線)(xfy?倍,求曲線方程.因為)(xf為單調(diào)函數(shù)。所以所求曲線為.223xy?
【總結(jié)】定積分的元素法一、什么問題可以用定積分解決?二、如何應(yīng)用定積分解決問題?表示為一、什么問題可以用定積分解決?1)所求量U是與區(qū)間[a,b]上的某函數(shù)f(x)有關(guān)的2)U對區(qū)間[a,b]具有可加性,即可通過“分割,近似,求和,取極限”定積分定義一個
2025-04-29 05:41
【總結(jié)】主要內(nèi)容典型例題第六章定積分及其應(yīng)用習(xí)題課(一)問題1:曲邊梯形的面積問題2:變速直線運動的路程存在定理廣義積分定積分定積分的性質(zhì)定積分的計算法牛頓-萊布尼茨公式()d()()bafxxFbFa??
2024-08-30 12:42
【總結(jié)】一、換元公式二、小結(jié)思考題第四節(jié)定積分的換元法定理假設(shè)(1))(xf在],[ba上連續(xù);(2)函數(shù))(tx??在],[??上是單值的且有連續(xù)導(dǎo)數(shù);(3)當(dāng)t在區(qū)間],[??上變化時,)(tx??的值在],[ba上變化,且a?)(??、b?)(??,則
2024-08-20 16:42
【總結(jié)】機動目錄上頁下頁返回結(jié)束第二節(jié)定積分在幾何學(xué)上的應(yīng)用一平面圖形的面積二體積三平面曲線的弧長機動目錄上頁下頁返回結(jié)束xyo)(xfy?abxyo)(1xfy?)(2xfy?ab面積:??badxxfA)(面積元素
2025-04-29 05:59
【總結(jié)】定理假設(shè)(1))(xf在],[ba上連續(xù);(2)函數(shù))(tx??在],[??上是單值的且有連續(xù)導(dǎo)數(shù);(3)當(dāng)t在區(qū)間],[??上變化時,)(tx??的值在],[ba上變化,且a?)(??、b?)(??,則有dtttfdxxfba????????)()]([)(.第
2025-04-21 04:54
【總結(jié)】第15講│定積分與微積分基本定理第15講定積分與微積分基本定理知識梳理第15講│知識梳理1.定積分的定義如果函數(shù)f(x)在區(qū)間[a,b]上連續(xù),用分點a=x0<x1<…<xi-1<xi<…<xn=b將區(qū)間[a,b]等分成
2024-11-11 06:00
【總結(jié)】定積分與微積分基本定理 1.已知f(x)為偶函數(shù),且f(x)dx=8,則-6f(x)dx=( )A.0B.4C.8D.162.設(shè)f(x)=(其中e為自然對數(shù)的底數(shù)),則f(x)dx的值為( )A.B.2C.1D.3.若a=x2dx,b=x3dx,c=sinxdx,則a、b、c的大小關(guān)系是( )A.a(chǎn)
2024-08-14 05:47
【總結(jié)】第一章第十三節(jié)定積分與微積分基本定理(理)題組一定積分的計算(x)為偶函數(shù)且f(x)dx=8,則f(x)dx等于( )A.0B.4C.8D.16解析:原式=f(x)dx+f(x)dx,∵原函數(shù)為偶函數(shù),∴在y軸兩側(cè)的圖象對稱,∴對應(yīng)的面積相等,
2024-07-31 09:21
【總結(jié)】定積分的概念-定積分的定義及其幾何意義主講:蔡承文定積分的定義及其幾何意義函數(shù)f(x)在[a,b]上的定積分01lim()niiifx??????課題引入新課講授實踐探究課堂小結(jié)課后鞏固非均勻分布總量計算方法課題引入新課講授
2024-08-14 05:40
【總結(jié)】第四節(jié)定積分與微積分基本定理(理)重點難點重點:了解定積分的概念,能用定義法求簡單的定積分,用微積分基本定理求簡單的定積分.難點:用定義求定積分知識歸納1.定積分的定義如果函數(shù)f(x)在區(qū)間[a,b]上連續(xù),用分點a=x0x1&l
2024-12-07 18:51
【總結(jié)】1積分方法與定積分的應(yīng)用1.複習(xí)不定積分和微分的關(guān)係2.定積分和面積的關(guān)係3.積分法則4.實際的應(yīng)用21.複習(xí)不定積分和微分的關(guān)係?我們先複習(xí)有關(guān)不定積分(IndefiniteIntegral)的定義。不定積分又稱為反微分(Antiderivative),其定義如下:?定義1:
2024-09-01 09:25
【總結(jié)】選修2-2導(dǎo)學(xué)案(18)§學(xué)習(xí)目標(biāo)與要求:在理解定積分概念和性質(zhì)的基礎(chǔ)上熟練掌握定積分的計算方法,掌握在平面直角坐標(biāo)系下用定積分計算簡單的平面曲線圍成的圖形面積。自主學(xué)習(xí)過程:一、復(fù)習(xí)與思考:1、求曲邊梯形面積的方法步驟是什么?2、定積分的概念、幾何意義是什么?微積分基本定理的內(nèi)容是什么?二、學(xué)習(xí)探究:探究:利用定積分求平面圖形的面積yOx圖
2025-06-18 07:37
【總結(jié)】1第八節(jié)定積分在幾何上的應(yīng)用第六章定積分的應(yīng)用建立積分模型的微元法求平面圖形的面積求空間立體的體積求平面曲線的弧長與曲率旋轉(zhuǎn)體的側(cè)面積小結(jié)思考題作業(yè)2究竟哪些量可用定積分來計算呢.首先討論這個問題.結(jié)合曲邊梯形面積的計算一、建立積分模型的微元法可知,用定積分
2025-04-29 06:12
【總結(jié)】定積分的幾何應(yīng)用?badxxf)(利用定積分解決實際問題的關(guān)鍵:建立定積分的式子,即找出被積函數(shù)和積分區(qū)間。建立定積分式子的方法:微元法(又稱元素法)定積分微元法的實質(zhì):對能夠用定積分解決的實際問題,尋找其被積函數(shù)和積分區(qū)間的方法。定積分的定義表達式:()bafxdx?01lim(
2024-12-08 09:19
【總結(jié)】定積分在幾何中的應(yīng)用??badxxfA)(???badxxfxfA)]()([12:復(fù)習(xí)引入()()|()()bbaafxdxFxFbFa????[其中F’(x)=f(x)]xyo)(xfy?abAxyo)(1xfy?)(2xfy?
2024-10-17 02:48