【總結(jié)】第15頁(yè)函數(shù)專題四恒成立、能成立問(wèn)題專題一、基礎(chǔ)理論回顧1、恒成立問(wèn)題的轉(zhuǎn)化:恒成立;2、能成立問(wèn)題的轉(zhuǎn)化:能成立;3、恰成立問(wèn)題的轉(zhuǎn)化:在M上恰成立的解集為M
2025-06-18 20:33
【總結(jié)】......恒成立、能成立問(wèn)題專題一、基礎(chǔ)理論回顧1、恒成立問(wèn)題的轉(zhuǎn)化:恒成立;2、能成立問(wèn)題的轉(zhuǎn)化:能成立;3、恰成立問(wèn)題的轉(zhuǎn)化:在M上恰成立的解集為M另一轉(zhuǎn)化方法:若在D上恰成立,等價(jià)于在D上的最小值,若
2025-06-18 22:01
【總結(jié)】......恒成立、能成立、恰成立、任意與存在一、知識(shí)歸納:1.恒成立問(wèn)題①若不等式在區(qū)間上恒成立,則等價(jià)于在區(qū)間上②若不等式在區(qū)間上恒成立,則等價(jià)于在區(qū)間上2.能成立問(wèn)題
2025-04-04 04:20
【總結(jié)】山東省墾利第一中學(xué)高三一輪復(fù)習(xí)§一元二次不等式恒成立問(wèn)題一元二次不等式恒成立問(wèn)題“含參不等式恒成立問(wèn)題”是數(shù)學(xué)中常見(jiàn)的問(wèn)題,在高考中頻頻出現(xiàn),是高考中的一個(gè)難點(diǎn)問(wèn)題。含參不等式恒成立問(wèn)題涉及到一次函數(shù)、二次函數(shù)的性質(zhì)和圖像,滲透著換元、化歸、數(shù)形結(jié)合、函數(shù)與方程等思想方法,有利于考查學(xué)生的綜合解題能力,在培養(yǎng)思維的靈活性、創(chuàng)造性等方面起到了積極的作
2025-03-24 05:31
【總結(jié)】含參數(shù)的一元二次不等式的解法解含參數(shù)的一元二次不等式,通常情況下,均需分類討論,那么如何討論呢?對(duì)含參一元二次不等式常用的分類方法有三種:一、按項(xiàng)的系數(shù)的符號(hào)分類,即;例1解不等式:分析:本題二次項(xiàng)系數(shù)含有參數(shù),,故只需對(duì)二次項(xiàng)系數(shù)進(jìn)行分類討論。解:∵解得方程兩根∴當(dāng)時(shí),解集為當(dāng)時(shí),不等式為,解集為當(dāng)時(shí),解集為
2025-03-24 23:42
【總結(jié)】專題——求參數(shù)取值范圍一般方法概念與用法恒成立問(wèn)題是數(shù)學(xué)中常見(jiàn)問(wèn)題,也是歷年高考的一個(gè)熱點(diǎn)。題型特點(diǎn)大多以已知一個(gè)變量的取值范圍,求另一個(gè)變量的取值范圍的形式出現(xiàn)。這樣的題型會(huì)出現(xiàn)于代數(shù)中的不等式里也會(huì)出現(xiàn)在幾何里。就常考題型的一般題型以及解題方法,我在這里做了個(gè)小結(jié)。題型以及解題方法一,分離參數(shù)在給出的不等式中,如果能通過(guò)恒等變形分離出參數(shù),即:若恒成立,只須求出,
2025-03-24 23:27
【總結(jié)】1近年高考熱點(diǎn)及難點(diǎn)問(wèn)題——恒成立、存在性問(wèn)題題型及解法“存在性”與“恒成立”問(wèn)題是近年來(lái)高考中的熱點(diǎn)及難點(diǎn)問(wèn)題,這類題目是邏輯問(wèn)題,也是對(duì)選修中“推理與證明”的理性的考查,表現(xiàn)形式一般是函數(shù)的問(wèn)題,對(duì)于這類問(wèn)題的區(qū)分與解法下面舉例說(shuō)明。已知函數(shù)]1,0[,274)(2????xxxxf,函數(shù))1(],
2025-01-10 15:59
【總結(jié)】987654321-1-2-3-4-5-6-7-8-14-12-10-8-6-4-22468101214987654321-1-2-3-4-5-6-7-8-14-12-10-8-6-4-2246810121
2025-01-09 19:58
【總結(jié)】利用導(dǎo)數(shù)求函數(shù)最值●基礎(chǔ)知識(shí)總結(jié)和邏輯關(guān)系一、函數(shù)的單調(diào)性求可導(dǎo)函數(shù)單調(diào)區(qū)間的一般步驟和方法:1)確定函數(shù)的的定義區(qū)間;2)求,令,解此方程,求出它在定義區(qū)間內(nèi)的一切實(shí)根;3)把函數(shù)的無(wú)定義點(diǎn)的橫坐標(biāo)和上面的各實(shí)數(shù)根按由小到大的順序排列起來(lái),然后用這些點(diǎn)把函數(shù)的定義區(qū)間分成若干個(gè)小區(qū)間;4)確定在各個(gè)區(qū)間內(nèi)的符號(hào),由的符號(hào)判定函數(shù)在每個(gè)相應(yīng)
2025-03-24 12:44
【總結(jié)】......二次函數(shù)恒成立問(wèn)題2016年8月東莞莞美學(xué)校一、恒成立問(wèn)題的基本類型:類型1:設(shè),(1)上恒成立;(2)上恒成立。類型2:設(shè)(1)當(dāng)時(shí),上恒成立,上恒成立(2)當(dāng)時(shí),上恒成立上
2025-03-24 06:26
【總結(jié)】......恒成立問(wèn)題二、恒成立問(wèn)題解決的基本策略A、兩個(gè)基本思想解決“恒成立問(wèn)題”思路1:在上恒成立;思路2:在上恒成立.如何在區(qū)間上求函數(shù)的最大值或者最小值問(wèn)題,可以通過(guò)題目的實(shí)際情況,采取合理有效的方法
2025-03-24 07:56
【總結(jié)】......“恒成立問(wèn)題”與“存在性問(wèn)題”的基本解題策略一、“恒成立問(wèn)題”與“存在性問(wèn)題”的基本類型恒成立、能成立、恰成立問(wèn)題的基本類型1、恒成立問(wèn)題的轉(zhuǎn)化:恒成立;2、能成立問(wèn)題的轉(zhuǎn)化:能成立;3、恰成立問(wèn)題的轉(zhuǎn)化:在M上恰成立的解集為M另一轉(zhuǎn)化方法:若在D上恰成立,等價(jià)于在D上的最小值,若在D上恰成立,則等價(jià)于在D
2025-03-25 02:09
【總結(jié)】一、曲線恒過(guò)定點(diǎn)問(wèn)題直線mx-y+2m+1=0經(jīng)過(guò)一定點(diǎn),則該點(diǎn)的坐標(biāo)是A(-2,1)B(2,1)C(1,-2)D(1,2)二、方程恒有解問(wèn)題三、不等式恒成立1、一次函數(shù)2、二次函數(shù)型3、變量分離法(構(gòu)造為參數(shù)和X的函數(shù),轉(zhuǎn)化為最值處理)對(duì)一切恒成立,對(duì)一切恒成立對(duì)一切恒成立的圖像在的圖像上方或
【總結(jié)】函數(shù)恒成立問(wèn)題恒成立問(wèn)題的基本類型:類型1:設(shè),(1)上恒成立;(2)上恒成立.類型2:設(shè)(1)當(dāng)時(shí),上恒成立或或上恒成立(2)當(dāng)時(shí),上恒成立上恒成立或或類型3:.類型4:典例精講例1(★★★)已知關(guān)于的不等式對(duì)一切實(shí)數(shù)恒成立,求實(shí)數(shù)的取
2025-03-25 06:47
【總結(jié)】導(dǎo)數(shù)恒成立中問(wèn)題中的整數(shù)問(wèn)題導(dǎo)數(shù)為我們解決有關(guān)函數(shù)問(wèn)題提供了一般性方法,是解決實(shí)際問(wèn)題強(qiáng)有力的工具.與初等數(shù)學(xué)方法比較,利用導(dǎo)數(shù)研究函數(shù)性質(zhì)具有簡(jiǎn)捷性、有效性和一般性的特點(diǎn).以函數(shù)為載體,以導(dǎo)數(shù)為工具,考查函數(shù)圖象、極(最)值、單調(diào)性及其應(yīng)用為目標(biāo),是最近幾年函數(shù)、導(dǎo)數(shù)及不等式交匯試題的顯著特點(diǎn)和命題趨向. 導(dǎo)數(shù)問(wèn)題靈活多變,經(jīng)常在與函數(shù)、不等式以及數(shù)列等知識(shí)的交匯處命題,綜合程
2025-03-25 05:32