【總結(jié)】一單項(xiàng)選擇題(每小題2分,共40分)1.下列四個(gè)微分方程中,為三階方程的有()個(gè).(1)(2)(3)(4)A.1B.2C.3D.42.為確定一個(gè)一般的n階微分方程=0的一個(gè)特解,通常應(yīng)給出的初始條件是().A.當(dāng)時(shí),B.當(dāng)時(shí),C.當(dāng)時(shí),D.當(dāng)時(shí),3.微分方程的一個(gè)解是().
2025-03-25 01:12
【總結(jié)】習(xí)題4—11.求解下列微分方程1)解利用微分法得當(dāng)時(shí),得從而可得原方程的以P為參數(shù)的參數(shù)形式通解或消參數(shù)P,得通解當(dāng)時(shí),則消去P,得特解2);解利用微分法得 當(dāng)時(shí),得從而可得原方程以p為參數(shù)的參數(shù)形式通解:或消p得通解當(dāng)時(shí),消去p得特解3)解利用微分法,得兩
2025-06-18 08:29
【總結(jié)】第十章常微分方程與差分方程嘉興學(xué)院17February2022第1頁差分方程第十章常微分方程與差分方程嘉興學(xué)院17February2022第2頁差分的概念及性質(zhì).Δ,)1()()1()0(:).(111210xxxxxxxyyyyy
2025-01-20 04:56
【總結(jié)】本章重點(diǎn)講述:A線性微分方程的基本理論;B常系數(shù)線性方程的解法;C某些高階方程的降階和二階方程的冪級數(shù)解法。對于二階及二階以上的微分方程的解包括基本理論和求解方法。這部分內(nèi)容有兩部分:1、線性微分方程(組):在第四、五章討論
2024-10-19 17:11
【總結(jié)】例1一曲線通過點(diǎn)(1,2),且在該曲線上任一點(diǎn)),(yxM處的切線的斜率為x2,求這曲線的方程.解)(xyy?設(shè)所求曲線為xdxdy2???xdxy22,1??yx時(shí)其中,2Cxy??即,1?C求得.12??xy所求曲線方程為一、問題的提出微分方程:凡含有未知函數(shù)的導(dǎo)數(shù)或微分的方程叫
2024-12-08 03:00
【總結(jié)】331§9.4二階常系數(shù)線性微分方程二階常系數(shù)線性微分方程的一般形式為)(xfqyypy??????其中qp和是實(shí)常數(shù),)(xf是已知函數(shù)。當(dāng)0)(?xf時(shí),形式為0??????qyypy稱為二階常系數(shù)線性齊次微分方程。例如034??????yy如果
【總結(jié)】第14章常微分方程的MATLAB求解編者Outline?微分方程的基本概念?幾種常用微分方程類型?高階線性微分方程?一階微分方程初值問題的數(shù)值解?一階微分方程組和高階微分方程的數(shù)值解?邊值問題的數(shù)值解微分方程的基本概念微分方程:一般的,凡表示未知函數(shù)、未知函數(shù)
2025-07-20 07:53
【總結(jié)】目錄上頁下頁返回結(jié)束微分方程課程的一個(gè)主要問題是求解,即把微分方程的解通過初等函數(shù)或它們的積分表達(dá)出來,但對一般的微分方程是無法求解的,如對一般的二元函數(shù)),(yxf,我們無法求出一階微分方程),(yxfy??(1)的解,但是對某些特殊類型的方程,我們可設(shè)法轉(zhuǎn)化為已解決的問題第二章
2024-12-08 09:04
【總結(jié)】目錄上頁下頁返回結(jié)束第五章線性微分方程組前面幾章研究了只含一個(gè)未知函數(shù)的一階或高階方程,但在許多實(shí)際的問題和一些理論問題中,往往要涉及到若干個(gè)未知函數(shù)以及它們導(dǎo)數(shù)的方程所組成的方程組,即微分方程組,本章將介紹一階微分方程組的一般解法,重點(diǎn)仍在線性方程組的基本理論和常系數(shù)線性方程的解法上.
【總結(jié)】1第三章二階及高階微分方程可降階的高階方程線性齊次常系數(shù)方程線性非齊次常系數(shù)方程的待定系數(shù)法高階微分方程的應(yīng)用線性微分方程的基本理論2前一章介紹了一些一階微分方程的解法,在實(shí)際的應(yīng)用中,還會遇到高階的微分方程,在這一章,我們討論二階及二階以上的微分方程,即高階微分方程的
2025-04-29 06:42
【總結(jié)】常微分方程習(xí)題集華東師范大學(xué)數(shù)學(xué)系
2025-06-24 15:07
【總結(jié)】常微分方程學(xué)習(xí)輔導(dǎo)(一)初等積分法微分方程的古典內(nèi)容主要是求方程的解,用積分的方法求常微分方程的解,叫做初等積分法,而可用積分法求解的方程叫做可積類型。初等積分法一直被認(rèn)為是常微分方程中非常有用的基本解題方法之一,也是初學(xué)者必須接受的最基本訓(xùn)練之一。在本章學(xué)習(xí)過程中,讀者首先要學(xué)會準(zhǔn)確判斷方程的可積類型,然后要熟練掌握針對不同可積類型的5種解法,最后在學(xué)習(xí)
【總結(jié)】???
2025-06-21 23:02
【總結(jié)】常微分方程考試大綱教材:《常微分方程》,王高雄等編,高等教育出版社,1983年9月第2版總要求考生應(yīng)理解《常微分方程》中線性與非線性方程,通解、特解與奇解、基本解組與基解矩陣、奇點(diǎn)與零解的穩(wěn)定性等基本概念。掌握一階微分方程的解的存在、唯一性定理及方程(組)的一般理論。掌握微分方程(組)的解法。應(yīng)注意各部分知識結(jié)構(gòu)及知識間的內(nèi)在聯(lián)系,應(yīng)有抽象思維、邏輯推理、準(zhǔn)確運(yùn)算
2024-10-04 15:27
【總結(jié)】第三章存在和唯一性定理一.[內(nèi)容提要]本章主要介紹解的存在和唯一性定理、,學(xué)過這一定理之后,對于微分方程的通解概念,才由形式上的理解轉(zhuǎn)為實(shí)質(zhì)上的理解;另外在求近似解之前,都必須從理論上做解的存在唯一性判定.關(guān)于解的延伸定理,它把解的存在唯一性定理所得到的、具有局部性的結(jié)果,,都是很有意義的.二.[關(guān)鍵詞]存在和唯一性,解的延伸,畢卡逐次逼近法三.[目的和要求]
2025-06-29 11:50