【正文】
++ 即可知 1ka+ 也滿足通項(xiàng)公式。 在上面的論證中,僅僅改變了假設(shè)的方式,而這種改變并未造成邏輯上的不合理,相反卻有利歸納過渡,因而是十分可取的。 以“假設(shè) nk= , 1nk=+時(shí)成立”代替“假設(shè) nk= 時(shí)成立” 有時(shí)也會碰到一些問題,它們的歸納需要依賴于前面兩個(gè)命題同時(shí)成立,這時(shí)就應(yīng)當(dāng)用“假設(shè) nk= , 1nk=+時(shí)成立”來代替通常的“假設(shè) nk= 時(shí)成立”,不過這樣一來,起點(diǎn)也應(yīng)增多為兩個(gè),否則,后面所作的假設(shè)就變得沒有依據(jù),整個(gè)論證也就變得不可信了。 例 設(shè) 1x 與 2x 是方程 2 6 1 0xx + = 的兩個(gè)根,試證對任何自然數(shù) n , 12nnxx+ 都是整數(shù),但不是 5的倍數(shù)。 證明:為了便于使用歸納法,我們先來推導(dǎo)一下遞推關(guān)系式 .由韋達(dá)定理知:1 2 1 26, 1x x x x+ = ? ,因而就有 1 1 1 11 2 1 2 1 26( ) ( ) ( )n n n nx x x x x x+ + + ++ = + + 2 2 1 11 2 1 2 2 1221 2 1 2 1 2221 2 1 2()n n n nn n n nn n n nx x x x x xx x x x x xx x x x+ + + +++++= + + += + + += + + + 故知 2 2 1 11 2 1 2 1 26( ) ( )n n n n n nx x x x x x+ + + ++ = + +, 即有 2 2 1 1 1 11 2 1 2 1 2 1 25 ( ) [ ( ) ( ) ]n n n n n n n nx x x x x x x x+ + + + + ++ = + + + + . 又當(dāng) 1n= 時(shí), 12 6 1(m o d .5 )xx+ = ? ;當(dāng) 2n= 時(shí), 2 2 21 2 1 2()x x x x+ = + 122 3 4 4 (m o d .5 )xx = ? ,故知當(dāng) 1n= 與 2時(shí), 12nnxx+ 都是整數(shù)且不為 5的倍數(shù),現(xiàn)假設(shè)nk= , 1nk=+時(shí), 12nnxx+ 也都是整數(shù),于是由遞推關(guān)系式 陜西科技大學(xué)畢業(yè)論文 22 2 2 1 11 2 1 2 1 26( ) ( )n n n n n nx x x x x x+ + + ++ = + + 知當(dāng) 2nk=+ 時(shí), 12nnxx+ 也是整數(shù) .所以對一切自然數(shù) n , 12nnxx+ 都是整數(shù)。 為證 12nnxx+ 都不是 5 的倍數(shù),以 na 記其被 5 除所得的余數(shù),于是由已證部分知121, 4aa==,且由遞推公式知 21n n na a a++=。再證 {na }是一個(gè)循環(huán)數(shù)列,循環(huán)節(jié)是 6。事實(shí)上,我們有 3 2 1 1 1()n n n n n n na a a a a a a+ + + + += = = 于是有 63 ()n n n na a a a++= = = 從而知 {na }是以 6作為循環(huán)節(jié)的循環(huán)數(shù)列 .于是可以算出: 6 1 1 6 2 2 6 3 31 , 4 , 3 ,n n na a a a a a+ + += = = = = = 6 4 4 6 5 5 6 6 61 , 4 , 3 ,n n na a a a a a+ + += = = = = = 它們都不為 0,這樣我們就證明了對一切自然數(shù) n , 12nnxx+ 都不是 5的倍數(shù)。 在本例論證的前一部分 —— 12nnxx+ 是整數(shù)中,就采用了“ nk= 與 1nk=+時(shí), 12nnxx+是整數(shù)”的假設(shè)形式,以便于利用遞推公式順利進(jìn) 行完成歸納過渡。這種假設(shè)形式,在論證數(shù)列問題時(shí)較為常用 .但在使用時(shí)應(yīng)注意對起點(diǎn)數(shù)作相應(yīng)的增多。 淺談數(shù)學(xué)歸納法的應(yīng)用 23 7 數(shù)學(xué)歸納法的地位和作用 數(shù)學(xué)歸納法在討論涉及正數(shù)無限性的問題時(shí),是一種非常重要的數(shù)學(xué)方法,在數(shù)學(xué)的學(xué)習(xí)中,它的地位和作用可以從以下三個(gè)方面來看: ( 1)中學(xué)數(shù)學(xué)中的許多重要結(jié)論,如等差數(shù)列、等比數(shù)列的通項(xiàng)公式及其前 n 項(xiàng)和公式、二項(xiàng)公式定理等都可以用數(shù)學(xué)歸納法進(jìn)行證明。對于由不完全歸納法得到的某些與正整數(shù)有關(guān)的數(shù)學(xué)命題,我們也常采用數(shù)學(xué)歸 納法來證明它們的正確性。 ( 2)運(yùn)用數(shù)學(xué)歸納法可以證明許多數(shù)學(xué)問題,如與 正整數(shù) n 有關(guān)的恒等式、不等式、一些整除問題、一些幾何問題等, 既可以開闊眼界,又可以受到推理論證的訓(xùn)練。對于一些用常規(guī)的分析綜合法不容易證明的題,用數(shù)學(xué)歸納法往往會得到一些意想不到的好結(jié)果。 ( 3)數(shù)學(xué)歸納法在進(jìn)一步學(xué)習(xí)高等數(shù)學(xué)時(shí)會經(jīng)常用到,因此掌握這種方法可以為今后的高等數(shù)學(xué)的學(xué)習(xí)打下一個(gè)良好的基礎(chǔ)。 陜西科技大學(xué)畢業(yè)論文 24 致 謝 經(jīng)過了數(shù)月的努力,我的畢業(yè)論文終于完成了,此時(shí),我 的心情常激動。雖然,本論文還有許多不足之處,但這也是我?guī)讉€(gè)月來努力的成果,以及我的導(dǎo)師曹慧老師對我孜孜不倦的指導(dǎo)。記得在剛剛確定論文課題的開始,導(dǎo)師就很耐心地幫助我,比個(gè)根據(jù)對我自身的特點(diǎn)給了我?guī)讉€(gè)比較合適的課題;還有在撰寫論文的過程中,老師也是隨時(shí)地提醒我要注意論文撰寫的進(jìn)度以及一些相關(guān)要求。所以,這篇論文并不僅僅是我個(gè)人的勞動成果,假如沒有導(dǎo)師的指導(dǎo)和支持,我的畢業(yè)論文肯定完成得不是那么順利。所以,我要發(fā)自肺腑地感謝我的導(dǎo)師,感謝她這幾個(gè)月來的辛勤知道和陪伴! 還有我敬愛的老師們,在我大學(xué)四年的 學(xué)習(xí)生活中,你們的諄諄教誨時(shí)時(shí)刻刻激勵(lì)著我,我之所以能夠很好地學(xué)到科學(xué)文化知識,全得益于你們的樂于奉獻(xiàn),所以在此,也要對你們說聲謝謝! 再者,還有我親愛的同學(xué)們,我的生活因?yàn)橛心銈兊呐惆槎辉倏菰锓ξ叮銈兘o我?guī)砹颂嗝篮玫幕貞?,這些回憶值得我永遠(yuǎn)珍藏,所以也要謝謝你們! 最后,我要感謝我的家人,有了你們的鼓勵(lì)和支持,我才能夠義無返顧的努力向前,我才能夠順利地完成學(xué)校,在此道一聲:謝謝你們! 還要感謝在百忙之中抽出時(shí)間參加我們畢業(yè)論文答辯的老師,你們辛苦了! 淺談數(shù)學(xué)歸納法的應(yīng)用 25 參考文獻(xiàn) [1]王子興 .數(shù)學(xué)方法論 [M].長沙:中南大學(xué)出版社, 2022:179204. [2]黃翔 .數(shù)學(xué)方法論選論 [M].重慶:重慶大學(xué)出版社, 1995:215223. [3]黃忠裕 . 中學(xué)數(shù)學(xué)思想方法專題選講 . 成都 : 四川大學(xué)出版社 . . [4]唐子周 .關(guān)于數(shù)學(xué)歸納法的一點(diǎn)探索 .中國科技信息 , 2022(03),238239 . [5]張莉 ,賀賢孝 .數(shù)學(xué)歸納法的歷史 .遼寧師范大學(xué)學(xué)報(bào) (自然科學(xué)版 ),1999(02),102106. [6]黃崇智 .第一及第二數(shù)學(xué)歸納原理的推廣 .四川:內(nèi)江師范學(xué)院學(xué)報(bào) , 2022(10),1112. [7]蘇淳 . 漫 話數(shù)學(xué)歸納法 . 合肥 . 中國科學(xué)技術(shù)大學(xué)出版社 . 2022:12127. ag an employment tribunal clai Emloyment tribunals sort out disagreements between employers and employees. You may need to make a claim to an employment tribunal if: you don39。t agree with the disciplinary action your employer has taken against you your employer dismisses you and you think that you have been dismissed unfairly. For more informu, take advice from one of the anisations listed under Further help. Employment tribunals are less formal than some other courts, but it is still a legal process and you will need to give evidence under an oath or affirmation. Most people find making a claim to an employment tribunal challenging. If you are thinking about making a claim to an employment tribunal, you should get help straight away from one of the anisations listed under Further help. ation about dismissal and unfair dismissal, see Dismissal. You can make a claim to an employment tribunal, even if you haven39。t appealed against the disciplinary action your employer has taken against you. However, if you win your case, the tribunal may reduce any pensation awarded to you as a result of your failure to appeal. Remember that in most cases you must make an application to an employment tribunal within three months of the date when the event you are plaining about happened. If your application is received after this time limit, the tribunal will not usually accept i. If you are worried about how the time limits apply to you If you are being represented by a solicitor at the tribunal, they may ask you to sign an agreement where you pay their fee out of your pensation if you win the case. This is known as a damagesbased agreement. In England and Wales, your solicitor can39。t charge you more than 35% of your pensation if you win the case. you39。re clear about the terms of the agreement. It might be best to get advice from an experienced adviser, for example, at a Citizens Advice Bureau. To find your nearest CAB, including those that give advice by , click on nearest CAB. For more information about making a claim to an employment tribunal, see Employment tribunals. The (lack of) air up there m Cay man Islandsbased Webb, the head of Watch Fifa39。s antiracism taskforce, is in London for the Football Association39。s 150th anniversary celebrations and will attend City39。s Premier League match at Chelsea on Sunday. I am going to be at the match tomorrow and I 陜西科技大學(xué)畢業(yè)論文 26 have asked to meet Ya ya Toure, he told BBC Sport. For me it39。s about how he felt and I would like to speak to him first to find out what his experience was. Uefa has opened disciplinary pro