【總結(jié)】高考數(shù)學(xué)難點(diǎn)突破訓(xùn)練——數(shù)列與數(shù)學(xué)歸納法,曲線2(0)yxy??上的點(diǎn)iP與x軸的正半軸上的點(diǎn)iQ及原點(diǎn)O構(gòu)成一系列正三角形△OP1Q1,△Q1P2Q2,?△Qn-1PnQn?設(shè)正三角形1nnnQPQ?的邊長為na,n∈N﹡(記0Q為O),??,0nnQS.(1)求1a的值;(2)求
2025-08-20 20:23
【總結(jié)】常數(shù)變易法的幾個(gè)常見應(yīng)用摘要:眾所皆知,常數(shù)變易法是用來解線性微分方程行之有效的一種方法,那么,何為常數(shù)變易法?簡單的說,是將常數(shù)變易為待定函數(shù)的方法。常數(shù)變易法是常微分方程解決一階非齊次線性微分方程的常用方法,本文主要就常數(shù)變易法在一階非齊次線性微分方程中的應(yīng)用來探究常數(shù)變易法在解微分方程中的重要性,并且由一階非齊次線性微分方程推廣到一類特殊的一階非線性微分方程中來,探討常數(shù)變易法在一階
2025-01-16 16:07
【總結(jié)】第一篇:歸納法證明不等式 歸納法證明不等式 由于lnx0則x 1設(shè)f(x)=x-lnxf'(x)=1-1/x0 則f(x)為增函數(shù)f(x)f(1)=1 則xlnx 則可知道等式成...
2024-10-28 02:13
【總結(jié)】數(shù)學(xué)歸納法典型例題?一.教學(xué)內(nèi)容:高三復(fù)習(xí)專題:數(shù)學(xué)歸納法?二.教學(xué)目的掌握數(shù)學(xué)歸納法的原理及應(yīng)用?三.教學(xué)重點(diǎn)、難點(diǎn)數(shù)學(xué)歸納法的原理及應(yīng)用?四.知識(shí)分析【知識(shí)梳理】數(shù)學(xué)歸納法是證明關(guān)于正整數(shù)n的命題的一種方法,在高等數(shù)學(xué)中有著重要的用途,因而成為高考的熱點(diǎn)之一。近幾年的高考試題,不但要求能用數(shù)學(xué)
2025-04-04 04:28
【總結(jié)】高考數(shù)學(xué)總復(fù)習(xí)課堂作業(yè)教案課后拓展學(xué)案課時(shí)練習(xí)與詳解免費(fèi)下載數(shù)學(xué)歸納法基礎(chǔ)自測:“1+a+a2+…+an+1=(a≠1)”在驗(yàn)證n=1時(shí),左端計(jì)算所得的項(xiàng)為.答案1+a+a2(n)對(duì)n=k成立,則它對(duì)n=k+1也成立,現(xiàn)已知P(n)對(duì)n=4不成立,則下列結(jié)論正確的是(填序號(hào)).①P(n)對(duì)n∈N*成立②P(n)對(duì)n>4且n
2025-06-07 19:24
【總結(jié)】考情分析通過分析近三年的高考試題可以看出,不但考查用數(shù)學(xué)歸納法去證明現(xiàn)成的結(jié)論,還考查用數(shù)學(xué)歸納法證明新發(fā)現(xiàn)的結(jié)論的正確性.?dāng)?shù)學(xué)歸納法的應(yīng)用主要出現(xiàn)在數(shù)列解答題中,一般是先根據(jù)遞推公式寫出數(shù)列的前幾項(xiàng),通過觀察項(xiàng)與項(xiàng)數(shù)的關(guān)系,猜想出數(shù)列的通項(xiàng)公式,再用數(shù)學(xué)歸納法進(jìn)行證明,初步形成“觀察—?dú)w納—猜想—證明”的思維模式;利用數(shù)學(xué)歸納法證明
2025-01-15 08:47
【總結(jié)】數(shù)學(xué)歸納法應(yīng)用舉例例1.用數(shù)學(xué)歸納法證明:2222(1)(21)1236nnnn???????證明:(1)當(dāng)n=1時(shí),左邊=1,右邊=1,等式成立;(2)假設(shè)當(dāng)n=k時(shí),等式成立,即2222(1)(21)1236kkkk???????那么
2024-11-18 01:21
【總結(jié)】本科畢業(yè)設(shè)計(jì)(論文)題目構(gòu)造法在中學(xué)數(shù)學(xué)解題中的應(yīng)用研究常熟
2025-08-19 12:06
【總結(jié)】1本科生畢業(yè)論文(設(shè)計(jì))題目探討類比法在數(shù)學(xué)解題中的應(yīng)用2目錄摘要?????????????????????????????(2)英文摘要?????????????????????
2025-08-16 20:30
【總結(jié)】用數(shù)學(xué)歸納法證明命題的基本步驟是:0n(1)證明當(dāng)n取第一個(gè)初始值時(shí),命題正確.)(0nkNkk??且(2)假設(shè)當(dāng)n=時(shí),結(jié)論正確,證明n=k+1結(jié)論也正確.0n在完成這兩個(gè)步驟后,就可斷定命題對(duì)從n=開始的所有的自然數(shù)n都正確.1、用數(shù)學(xué)歸納法證明命題時(shí),兩個(gè)步驟缺
2025-07-25 15:41
【總結(jié)】數(shù)列、極限、數(shù)學(xué)歸納法·等差、等比數(shù)列綜合問題·教案教學(xué)目標(biāo)1.熟練運(yùn)用等差、等比數(shù)列的概念、通項(xiàng)公式、前n項(xiàng)和公式以及有關(guān)性質(zhì),分析和解決等差、等比數(shù)列的綜合問題.2.突出方程思想的應(yīng)用,引導(dǎo)學(xué)生選擇簡捷合理的運(yùn)算途徑,提高運(yùn)算速度和運(yùn)算能力.教學(xué)重點(diǎn)與難點(diǎn)1.用方程的觀點(diǎn)認(rèn)識(shí)等差、等比數(shù)列的基礎(chǔ)知識(shí)、從本質(zhì)上掌握公式.2.解決應(yīng)用問題時(shí),分
2025-06-07 19:16
【總結(jié)】第2課時(shí)數(shù)學(xué)歸納法的應(yīng)用雙基達(dá)標(biāo)?限時(shí)20分鐘?1.用數(shù)學(xué)歸納法證明an+bn2≥????a+b2n(a,b是非負(fù)實(shí)數(shù),n∈N+)時(shí),假設(shè)n=k命題成立之后,證明n=k+1命題也成立的關(guān)鍵是__________________.解析要想辦法出現(xiàn)ak+1+
2024-12-04 20:00
【總結(jié)】數(shù)學(xué)歸納法數(shù)學(xué)歸納法及其應(yīng)用舉例課題引入①觀察:6=3+3,8=5+3,10=3+7,12=5+7,14=3+11,16=5+11,···78=67+11,···我們能得出什么結(jié)論?任何一個(gè)大于等于6的偶數(shù),都可以表示成兩個(gè)
2024-10-04 20:45
【總結(jié)】思考1思考2復(fù)習(xí)引入練習(xí)答案作業(yè):課本54P6題數(shù)學(xué)歸納法證明不等式數(shù)學(xué)歸納法證明不等式(即n=n0第一個(gè)命題對(duì)應(yīng)的n的值,如n0=1)(歸納奠基);n=k時(shí)命題成立,證明當(dāng)n=k+1時(shí)命題也成立(歸納遞推).數(shù)學(xué)歸納法:關(guān)于正整數(shù)n的命題(相當(dāng)于多米諾骨牌
2024-11-21 01:17
【總結(jié)】北京市重點(diǎn)高中高二數(shù)學(xué)歸納法練習(xí)一.選擇題1.用數(shù)學(xué)歸納法證明,在驗(yàn)證成立時(shí),左邊所得的項(xiàng)為()A.1B.1+C.D.[來源:學(xué)???。網(wǎng)]2.用數(shù)學(xué)歸納法證明,則從k到k+1時(shí),左邊所要添加的項(xiàng)是()A.B.C.D.3.用數(shù)學(xué)歸納法證明“當(dāng)為正奇數(shù)時(shí)
2025-06-07 16:43