【總結(jié)】數(shù)學(xué)歸納法目標(biāo):1.?dāng)?shù)學(xué)歸納法的原理及其步驟.2.能用數(shù)學(xué)歸納法證明一些簡單的數(shù)學(xué)命題.要求:復(fù)習(xí)時(shí)要抓住數(shù)學(xué)歸納法證明命題的原理,明晰其內(nèi)在的聯(lián)系,把握數(shù)學(xué)歸納法證明命題的一般步驟,熟知每一步之間的區(qū)別聯(lián)系,熟悉數(shù)學(xué)歸納法在證明命題中的應(yīng)用技巧.基礎(chǔ)梳理1.歸納法由一系列有限的特殊事例得出一般結(jié)論的推理方法,通常叫做歸納法.根據(jù)推理過程中考查的對象是涉及事物的全
2025-08-04 16:36
【總結(jié)】多米諾骨牌問題情境一已知數(shù)列的通項(xiàng)公式為}{na22)55(???nnan(1)求出其前四項(xiàng),你能得到什么樣的猜想?(2)你的猜想正確嗎?對于數(shù)列{},na)1(2111????nnnaaa)∈(*Nn(1)求出數(shù)列前4項(xiàng),你能得到什么猜想?(
2024-11-18 07:35
【總結(jié)】數(shù)學(xué)歸納法及其應(yīng)用舉例數(shù)學(xué)歸納法及其應(yīng)用舉例數(shù)學(xué)歸納法及其應(yīng)用舉例數(shù)學(xué)歸納法及其應(yīng)用舉例數(shù)學(xué)歸納法及其應(yīng)用舉例數(shù)學(xué)歸納法及其應(yīng)用舉例數(shù)學(xué)歸納法及其應(yīng)用舉例數(shù)學(xué)歸納法及其應(yīng)用舉例先證明當(dāng)n取第一個(gè)值(如)時(shí)命題成立,然后假設(shè)當(dāng)時(shí)命題成立
2024-11-09 06:17
【總結(jié)】數(shù)學(xué)歸納法數(shù)學(xué)歸納法及其應(yīng)用舉例課題引入①觀察:6=3+3,8=5+3,10=3+7,12=5+7,14=3+11,16=5+11,···78=67+11,···我們能得出什么結(jié)論?任何一個(gè)大于等于6的偶數(shù),都可以表示成兩個(gè)
2025-09-25 20:45
【總結(jié)】數(shù)學(xué)歸納法(第一課時(shí))牟定縣第一高級(jí)中學(xué)中學(xué)2022-9-10情境察下列各等式,你發(fā)現(xiàn)了什么?歸納問題情境思考:你由不完全歸納法所發(fā)現(xiàn)的結(jié)論正確嗎?若不正確,請舉一個(gè)反例;若正確,如何證明呢?情境察多米諾骨牌的游戲。學(xué)生活動(dòng)思考(1)你能說出使所有多米
2025-04-30 18:13
【總結(jié)】問題情境一4341112???4741222???5341332???6141442???7141552???的數(shù)都是質(zhì)數(shù)任何形如出猜想于是可以用歸納推理提都是質(zhì)數(shù),)(41*2Nnnn???結(jié)論是錯(cuò)誤的。是一個(gè)合數(shù)時(shí),因?yàn)?341414141414122????????nnn
2024-11-18 15:25
【總結(jié)】§數(shù)學(xué)歸納法學(xué)習(xí)目標(biāo)思維脈絡(luò)1.能理解用數(shù)學(xué)歸納法證明問題的原理.2.會(huì)用數(shù)學(xué)歸納法證明與正整數(shù)有關(guān)的等式及數(shù)列問題.3.能用數(shù)學(xué)歸納法證明與n有關(guān)的不等式整除問題.4.注意總結(jié)用數(shù)學(xué)歸納法證明命題的步驟與技巧方法.121.數(shù)學(xué)歸納法數(shù)學(xué)歸納法是用來證
2024-11-18 00:49
【總結(jié)】22)55(???nnan;,,,4321aaaa導(dǎo)引一問題1已知,(n∈N*),(1)分別求(2)由此你能得到一個(gè)什么結(jié)論?這個(gè)結(jié)論正確嗎?問題2費(fèi)馬(Fermat)是17世紀(jì)法國著名的數(shù)學(xué)家,他曾認(rèn)為,當(dāng)n∈N時(shí),一定都是質(zhì)數(shù),這是他對n=0,1
2024-11-20 23:54
【總結(jié)】點(diǎn)列、遞歸數(shù)列和數(shù)學(xué)歸納法 【考題回放】?1.已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=2(an-1),則a2等于(?A?)?A.4???????B.2?????
2025-08-04 17:56
【總結(jié)】I淺談數(shù)學(xué)歸納法的應(yīng)用摘要數(shù)學(xué)歸納法是一種非常重要的數(shù)學(xué)方法,它不僅對我們中學(xué)數(shù)學(xué)的學(xué)習(xí)有著很大的幫助,而且在高等數(shù)學(xué)的學(xué)習(xí)及研究中也是一種重要的方法,數(shù)學(xué)歸納法對公式的正確性檢驗(yàn)中也有著很大的應(yīng)用。數(shù)學(xué)歸納法是將無限化為有限的橋梁,主要探討關(guān)于自然數(shù)集的有關(guān)命題或者恒等式,數(shù)學(xué)歸納法在中學(xué)數(shù)學(xué)中的整除問題,恒等式證明,公理證明,排列和
2025-01-12 15:26
【總結(jié)】第一篇:數(shù)學(xué)歸納法應(yīng)用(二)shen 數(shù)學(xué)歸納法應(yīng)用 (二)一、教學(xué)目標(biāo) 1、繼續(xù)鞏固數(shù)學(xué)歸納法的證明步驟; 2、掌握用數(shù)學(xué)歸納法證明等式; 3、掌握用數(shù)學(xué)歸納法證明整除。 二、典型例題 ...
2024-11-04 23:21
【總結(jié)】§數(shù)學(xué)歸納法課時(shí)目標(biāo).2.能用數(shù)學(xué)歸納法證明一些簡單的數(shù)學(xué)命題.握數(shù)學(xué)歸納法的實(shí)質(zhì)及與歸納,猜想的關(guān)系..1.?dāng)?shù)學(xué)歸納法公理對于某些________________的數(shù)學(xué)命題,可以用數(shù)學(xué)歸納法證明.2.證明步驟對于某些與正整數(shù)有關(guān)的數(shù)學(xué)命題,如果(1)當(dāng)n________
2024-12-05 09:28
【總結(jié)】2.3數(shù)學(xué)歸納法(2)證明某些與自然數(shù)有關(guān)的數(shù)學(xué)題,可用下列方法來證明它們的正確性:(1)驗(yàn)證當(dāng)n取第一個(gè)值n0(例如n0=1)時(shí)命題成立,(2)假設(shè)當(dāng)n=k(k?N*,k?n0)時(shí)命題成立,證明當(dāng)n=k+1時(shí)命題也成立完成這兩步,就可以斷定這個(gè)命題對從n0開始的所有正整數(shù)n都成立。這種證明方法叫做數(shù)學(xué)歸納法。
【總結(jié)】第一篇:數(shù)列求和方法及數(shù)學(xué)歸納法 數(shù)列求和 一、常用公式法 直接利用公式求和是數(shù)列求和的最基本的方法.常用的數(shù)列求和公式有: 等差數(shù)列求和公式: 等比數(shù)列求和公式: 二、錯(cuò)位相減法 可以...
2025-10-03 10:10
【總結(jié)】高考數(shù)學(xué)難點(diǎn)突破訓(xùn)練——數(shù)列與數(shù)學(xué)歸納法,曲線2(0)yxy??上的點(diǎn)iP與x軸的正半軸上的點(diǎn)iQ及原點(diǎn)O構(gòu)成一系列正三角形△OP1Q1,△Q1P2Q2,?△Qn-1PnQn?設(shè)正三角形1nnnQPQ?的邊長為na,n∈N﹡(記0Q為O),??,0nnQS.(1)求1a的值;(2)求
2025-08-20 20:23