【總結(jié)】§二元函數(shù)偏導(dǎo)數(shù)的應(yīng)用?在幾何上的應(yīng)用?二元函數(shù)極值的求法?小結(jié)?思考與練習(xí)的參數(shù)設(shè)空間曲線L方程為????????)()()(tztytx???ozyxM??M?為零。的導(dǎo)數(shù)存在,且不同時(shí)數(shù)對(duì)這里假定上式的三個(gè)函t
2025-05-06 03:15
【總結(jié)】目錄上頁(yè)下頁(yè)返回結(jié)束第二節(jié)一、偏導(dǎo)數(shù)概念及其計(jì)算二、高階偏導(dǎo)數(shù)偏導(dǎo)數(shù)第九章目錄上頁(yè)下頁(yè)返回結(jié)束一、偏導(dǎo)數(shù)定義及其計(jì)算法引例:研究弦在點(diǎn)x0處的振動(dòng)速度與加速度,就是),(txu0xOxu中的
2025-01-20 00:57
【總結(jié)】§多元函數(shù)的偏導(dǎo)數(shù)與全微分(一)主要內(nèi)容?偏導(dǎo)數(shù)的概念及計(jì)算方法?高階導(dǎo)數(shù)定義8.3設(shè)函數(shù)),(yxfz?在點(diǎn)),(00yx的某一鄰域內(nèi)有定義,當(dāng)y固定在0y而x在0x處有增量x?時(shí),相應(yīng)地函數(shù)有增量),(
2025-04-28 23:20
【總結(jié)】高等院校非數(shù)學(xué)類本科數(shù)學(xué)課程大學(xué)數(shù)學(xué)(三)多元微積分學(xué)第一章多元函數(shù)微分學(xué)曾金平教案編寫(xiě):劉楚中曾金平電子制作:劉楚中第一章多元函數(shù)微分學(xué)本章學(xué)習(xí)要求:1.理解多元函數(shù)的概念。熟悉多元函數(shù)的“點(diǎn)函數(shù)”表示法。2.知道二元函數(shù)的極限、連續(xù)性等概念,以及有界閉域上連續(xù)函數(shù)的性質(zhì)。
2025-05-07 12:10
【總結(jié)】課時(shí)教案授課章節(jié)及題目偏導(dǎo)數(shù)與全微分(1)授課時(shí)間周二第3、4節(jié)課次1學(xué)時(shí)2教學(xué)目標(biāo)與要求1、了解二元函數(shù)偏導(dǎo)數(shù)的定義2、掌握求二元函數(shù)偏導(dǎo)數(shù)的方法教學(xué)重點(diǎn)與難點(diǎn)教學(xué)重點(diǎn):二元函數(shù)偏導(dǎo)數(shù)的求法教學(xué)難點(diǎn):二元函數(shù)偏導(dǎo)數(shù)的定義教學(xué)用具無(wú)教學(xué)過(guò)程環(huán)節(jié)、時(shí)間授課內(nèi)容教學(xué)方法課程導(dǎo)入(5分
2025-08-05 01:51
【總結(jié)】定理(極值第二判別法)0()0,xxfx???.)(,0)()1(00為極小值則若xfxf???.)(,0)()2(00為極大值則若xfxf???.)(,0)()3(00是否為極值則不能判斷若xfxf???證:(1)由導(dǎo)數(shù)定義,有000)()(lim)(0xxxfxfxfxx????
2025-05-14 02:52
【總結(jié)】定義設(shè)函數(shù)),(yxfz?在點(diǎn)),(00yx的某一鄰域內(nèi)有定義,當(dāng)y固定在0y而x在0x處有增量x?時(shí),相應(yīng)地函數(shù)有增量),(),(0000yxfyxxf???,如果xyxfyxxfx??????),(),(lim00000存在,則稱此極限為函
2025-07-17 22:53
【總結(jié)】返回后頁(yè)前頁(yè)§1可微性與偏導(dǎo)數(shù)本節(jié)首先討論二元函數(shù)的可微性,這是多元函數(shù)微分學(xué)最基本的概念.然后給出對(duì)單個(gè)自變量的變化率,即偏導(dǎo)數(shù).偏導(dǎo)數(shù)無(wú)論在理論上或在應(yīng)用上都起著關(guān)鍵性的作用.四、可微性的幾何意義及應(yīng)用返回一、可微性與全微分二、偏導(dǎo)數(shù)三、可微性條件返回
2025-07-25 02:49
【總結(jié)】第二節(jié)偏導(dǎo)數(shù)一、偏導(dǎo)數(shù)的概念二、偏導(dǎo)數(shù)的求法三、高階偏導(dǎo)數(shù)一、偏導(dǎo)數(shù)的概念定義設(shè)函數(shù)z=f(x,y)在點(diǎn)(x0,y0)的某一鄰域內(nèi)有定義,當(dāng)y固定在y0,而x在x0處有增量△x時(shí),相應(yīng)函數(shù)有增量).,(),(0000yxfyxxf???如果極限xyxfyxxfx??????),()
2025-08-01 13:06
【總結(jié)】機(jī)動(dòng)目錄上頁(yè)下頁(yè)返回結(jié)束1/28四、小結(jié)思考題一、偏導(dǎo)數(shù)三、高階偏導(dǎo)數(shù)二、全微分機(jī)動(dòng)目錄上頁(yè)下頁(yè)返回結(jié)束2/28一、偏導(dǎo)數(shù)【定義】設(shè)),(yxfz?在點(diǎn)),(00yx的某一鄰域內(nèi)有定義,當(dāng)y固定在0y而x在0x處有增量x?
【總結(jié)】第五節(jié)高階偏導(dǎo)數(shù)本節(jié)主要講兩個(gè)問(wèn)題:一、什么是高階偏導(dǎo)數(shù)二、在什么條件下混合偏導(dǎo)數(shù)相等多元函數(shù)的高階偏導(dǎo)數(shù)與一元函數(shù)的高階導(dǎo)數(shù)類似:一般情況下,函數(shù)的偏導(dǎo)數(shù)還是的函數(shù),如果的偏導(dǎo)數(shù)還存在,則稱它們的偏導(dǎo)數(shù)為的二階偏導(dǎo)數(shù).即:函數(shù)一階偏導(dǎo)數(shù)的偏導(dǎo)數(shù),稱為原來(lái)函數(shù)的二階偏導(dǎo)數(shù).函數(shù)二階偏導(dǎo)數(shù)
2025-04-30 18:09
【總結(jié)】......求偏導(dǎo)數(shù)的方法小結(jié)(應(yīng)化2,聞庚辰,學(xué)號(hào):130911225)一,一般函數(shù):計(jì)算多元函數(shù)的偏導(dǎo)數(shù)時(shí),由于變?cè)啵?jì)算量較大.在求某一點(diǎn)的偏導(dǎo)數(shù)時(shí),一般的計(jì)算方法是,先求出偏導(dǎo)函數(shù),再代人這一點(diǎn)的值而得到這一點(diǎn)的偏導(dǎo)數(shù).我們發(fā)現(xiàn),把部分變?cè)闹迪却撕瘮?shù)中,減少變?cè)臄?shù)量,再計(jì)算偏
2025-04-09 01:53
【總結(jié)】一、偏導(dǎo)數(shù)的概念二、高階偏導(dǎo)數(shù)三、可微與偏導(dǎo)數(shù)的關(guān)系*多元函數(shù)的偏導(dǎo)數(shù)和全微分四、全微分在二元函數(shù)z=f(x,y)中,有兩個(gè)自變量x,y,但若固定其中一個(gè)自變量,比如,令y=y0,而讓x變化.則z成為一元函數(shù)z=f(x,y0),我們可用討論一元函數(shù)的方法來(lái)討論它
2025-08-04 18:32
【總結(jié)】一、知識(shí)點(diǎn)1.導(dǎo)數(shù)應(yīng)用的知識(shí)網(wǎng)絡(luò)結(jié)構(gòu)圖:2.基本思想與基本方法:①數(shù)形轉(zhuǎn)化思想:從幾何直觀入手,理解函數(shù)單調(diào)性與其導(dǎo)數(shù)的關(guān)系,由導(dǎo)數(shù)的幾何意義直觀地探討出用求導(dǎo)的方法去研究,解決有導(dǎo)數(shù)函數(shù)的極值與最值問(wèn)題。這體現(xiàn)了數(shù)學(xué)研究中理論與實(shí)踐的辯證關(guān)系,具有較大的實(shí)踐意義。②求有導(dǎo)數(shù)函數(shù)y=f(x
2024-11-09 06:29
【總結(jié)】定積分在幾何中的應(yīng)用定積分的簡(jiǎn)單應(yīng)用:()()|()()bbaafxdxFxFbFa????[其中F′(x)=f(x)]:知識(shí)鏈接Oxyaby?f(x)x?a、x?b與x軸所圍成的曲邊梯形的面積。當(dāng)f(x)?0時(shí),積分
2025-01-20 04:19