【總結】1小結思考題作業(yè)空間曲線的切線與法平面曲面的切平面與法線第九節(jié)偏導數(shù)在幾何上的應用第八章多元函數(shù)微分法及其應用2一、空間曲線的切線與法平面1.空間曲線的方程為參數(shù)方程設空間曲線的方程()()()(),rrttitjtkt?????????
2025-05-13 14:48
【總結】在一元函數(shù)微分學中,復合函數(shù)的鏈式求導法則是最重要的求導法則之一,它解決了很多比較復雜的函數(shù)的求導問題.對于多元函數(shù),也有類似的求導法則.與一元復合函數(shù)求導相比,,中間變量和都可以是和的二元函數(shù);也可以只是某一個變量的函數(shù),還可能中間變量和分別是不同個數(shù)自變量的函數(shù),譬如是的函數(shù),而只是的函數(shù);等等。下面討論二元復合函數(shù)的求導法則,對二元以上的多元函數(shù)的求導法則可類似推出.,
2025-07-23 06:55
【總結】導數(shù)的定義0()yfxx?設函數(shù)在點的某定義:個鄰域內(nèi)0,(xxx?有定義當自變量在處取得增量點0),xxy??仍在該鄰域內(nèi)時相應地函數(shù)取得00()();yfxxfxyx???????增量如果與之0,()xyfx?
2025-08-05 04:41
【總結】第八章習題課機動目錄上頁下頁返回結束一、基本概念二、多元函數(shù)微分法三、多元函數(shù)微分法的應用多元函數(shù)微分法一、基本概念連續(xù)性偏導數(shù)存在方向?qū)?shù)存在可微性1.多元函數(shù)的定義、極限、連續(xù)?定義域及對應規(guī)律?判斷極限不存在及求
2025-08-05 18:11
【總結】§偏導數(shù)一、偏導數(shù)的定義及其計算法二、高階偏導數(shù)一、偏導數(shù)的定義及其計算法類似地,可定義函數(shù)z?f(x,y)在點(x0,y0)處對y的偏導數(shù).?偏導數(shù)的定義設函數(shù)z?f(x,y)在點(x0,y0)的某一鄰域內(nèi)有定義,若極限xyxfyxxfx?
2025-07-26 18:29
【總結】定義設函數(shù)),(yxfz?在點),(00yx的某一鄰域內(nèi)有定義,當y固定在0y而x在0x處有增量x?時,相應地函數(shù)有增量),(),(0000yxfyxxf???,如果xyxfyxxfx??????),(),(lim00000存在,則稱此極限為函
2025-07-17 22:53
【總結】返回后頁前頁§1可微性與偏導數(shù)本節(jié)首先討論二元函數(shù)的可微性,這是多元函數(shù)微分學最基本的概念.然后給出對單個自變量的變化率,即偏導數(shù).偏導數(shù)無論在理論上或在應用上都起著關鍵性的作用.四、可微性的幾何意義及應用返回一、可微性與全微分二、偏導數(shù)三、可微性條件返回
2025-07-25 02:49
【總結】第二節(jié)偏導數(shù)一、偏導數(shù)的概念二、偏導數(shù)的求法三、高階偏導數(shù)一、偏導數(shù)的概念定義設函數(shù)z=f(x,y)在點(x0,y0)的某一鄰域內(nèi)有定義,當y固定在y0,而x在x0處有增量△x時,相應函數(shù)有增量).,(),(0000yxfyxxf???如果極限xyxfyxxfx??????),()
2025-08-01 13:06
【總結】§二元函數(shù)偏導數(shù)的應用?在幾何上的應用?二元函數(shù)極值的求法?小結?思考與練習的參數(shù)設空間曲線L方程為????????)()()(tztytx???ozyxM??M?為零。的導數(shù)存在,且不同時數(shù)對這里假定上式的三個函t
2025-05-06 03:15
【總結】目錄上頁下頁返回結束第二節(jié)一、偏導數(shù)概念及其計算二、高階偏導數(shù)偏導數(shù)第九章目錄上頁下頁返回結束一、偏導數(shù)定義及其計算法引例:研究弦在點x0處的振動速度與加速度,就是),(txu0xOxu中的
2025-01-20 00:57
【總結】高等院校非數(shù)學類本科數(shù)學課程大學數(shù)學(三)多元微積分學第一章多元函數(shù)微分學曾金平教案編寫:劉楚中曾金平電子制作:劉楚中第一章多元函數(shù)微分學本章學習要求:1.理解多元函數(shù)的概念。熟悉多元函數(shù)的“點函數(shù)”表示法。2.知道二元函數(shù)的極限、連續(xù)性等概念,以及有界閉域上連續(xù)函數(shù)的性質(zhì)。
2025-05-07 12:10
【總結】()基本初等函數(shù)的導數(shù)公式及導數(shù)的運算法則基本初等函數(shù)的導數(shù)公式1.2.()3.4.5.ln6.7.8.nRa?'n'n-1''x'xx'x'a'若f(x)=c,則f(
2025-11-12 01:21
【總結】一、復習目標了解導數(shù)概念的某些實際背景(瞬時速度,加速度,光滑曲線切線的斜率等),掌握函數(shù)在一點處的導數(shù)的定義和導數(shù)的幾何意義,理解導數(shù)的概念,熟記常見函數(shù)的導數(shù)公式c,xm(m為有理數(shù)),sinx,cosx,ex,ax,lnx,logax的導數(shù),并能熟練應用它們求有關導數(shù).二、重點解析
2025-11-02 02:10
2025-08-05 05:46
【總結】第三章導數(shù)及其應用人教A版數(shù)學第三章導數(shù)及其應用人教A版數(shù)學第三章導數(shù)及其應用人教A版數(shù)學1.知識與技能結合函數(shù)的圖象,了解函數(shù)在某點取得極值的必要條件和充分條件.2.過程與方法會用導數(shù)求不超過三次的多項
2025-10-10 11:51