【總結(jié)】及導數(shù)的運算法則我們今后可以直接使用的基本初等函數(shù)的導數(shù)公式11.(),'()0;2.(),'();3.()sin,'()cos;4.()cos,'()sin;5.(),'()ln(0);6.()
2025-07-24 07:06
【總結(jié)】第二章導數(shù)與微分什么是導數(shù)、微分?如何計算導數(shù)、微分?第二章導數(shù)與微分第一節(jié)導數(shù)的概念主要內(nèi)容:導數(shù)的定義導數(shù)的幾何意義可導性與連續(xù)性的關(guān)系問題的提出0tt?,0時刻的瞬時速度求tt如圖,,0tt的
2025-07-24 04:51
【總結(jié)】導數(shù)公式表一、知識新授:1、常數(shù)函數(shù)與冪函數(shù)的導數(shù)公式1:)(0為常數(shù)CC??幾何意義:常數(shù)函數(shù)在任何一點處的切線平行于x軸。練習2:1x??????????00limlim11xxyfxxfxxfxxxxxxxx???????
2025-08-05 06:14
【總結(jié)】復合函數(shù)的導數(shù)一、復習與引入:1.函數(shù)的導數(shù)的定義與幾何意義...y=(3x-2)2的導數(shù),那么我們可以把平方式展開,利用導數(shù)的四則運算法則求導.然后能否用其它的辦法求導呢?又如我們知道函數(shù)y=1/x2的導數(shù)是=-2/x3,那么函數(shù)y=1/(3x-2)2的導數(shù)又是什么呢?為了解決上面
2025-10-28 19:05
【總結(jié)】第三章導數(shù)及其應用人教A版數(shù)學第三章導數(shù)及其應用人教A版數(shù)學第三章導數(shù)及其應用人教A版數(shù)學1.知識與技能結(jié)合函數(shù)的圖象,了解函數(shù)在某點取得極值的必要條件和充分條件.2.過程與方法會用導數(shù)求不超過三次的多項
2025-10-10 11:51
【總結(jié)】.............123一、復習目標了解導數(shù)概念的某些實際背景(瞬時速度,加速度,光滑曲線切線的斜率等),掌握函數(shù)在一點處的導數(shù)的定義和導數(shù)的幾何意義,理解導數(shù)的概念,熟記常見函數(shù)的導數(shù)公式c,xm(m為有理數(shù)),sinx,cosx,ex
2025-10-25 20:18
【總結(jié)】第一節(jié)導數(shù)的概念一、問題的提出二、導數(shù)的定義三、由定義求導數(shù)四、導數(shù)的幾何意義五、可導與連續(xù)的關(guān)系一、問題的提出1、瞬時速度問題設運動物體的運動方程為s=s(t),則在t與t0之間平均速度Δt)s(tΔt)s(tΔtΔsv00????00)(
2025-01-12 10:10
【總結(jié)】第84講函數(shù)的連續(xù)性與導數(shù)的概念復習目標及教學建議基礎(chǔ)訓練知識要點雙基固化能力提升規(guī)律總結(jié)復習目標掌握函數(shù)在某點處連續(xù),在開區(qū)間、閉區(qū)間上連續(xù)的定義與判定方法,知道函數(shù)在某點處不連續(xù)三種類型.了解導數(shù)的實際背景,理解導數(shù)的定義,掌握導數(shù)的幾何意義.
2025-10-09 11:50
【總結(jié)】上頁下頁鈴結(jié)束返回首頁1主要內(nèi)容:第二章導數(shù)與微分第三節(jié)由參數(shù)方程確定的函數(shù)的導數(shù)、高階導數(shù)一、由參數(shù)方程確定的函數(shù)的導數(shù);二、高階導數(shù).上頁下頁鈴
2025-05-12 16:21
【總結(jié)】已知:函數(shù)是可導的奇函數(shù),求證:其導函數(shù)是偶函數(shù)。()fx()fx?????????????000()limlimlim()xxxfxxfxfxxfxxfxxfxxfxxfx????
2025-07-25 20:32
【總結(jié)】導數(shù)的定義0()yfxx?設函數(shù)在點的某定義:個鄰域內(nèi)0,(xxx?有定義當自變量在處取得增量點0),xxy??仍在該鄰域內(nèi)時相應地函數(shù)取得00()();yfxxfxyx???????增量如果與之0,()xyfx?
2025-08-05 04:41
【總結(jié)】第一節(jié)導數(shù)的概念一、導數(shù)概念的引出1.變速直線運動的速度設描述質(zhì)點運動位置的函數(shù)為0t則到的平均速度為00)()(tttstsv???而在時刻的瞬時速度為00)()(lim0tttstsvtt????221tg
2025-04-21 05:05
【總結(jié)】的導數(shù)一、復習幾何意義:曲線在某點處的切線的斜率;物理意義:物體在某一時刻的瞬時度。(三步法)步驟:說明:上面的方法中把x換x0即為求函數(shù)在點x0處的導數(shù).:f(x)在點x0處的導數(shù)就是導函數(shù)在x=x0處的函數(shù)值
2025-10-28 17:19
【總結(jié)】第三章導數(shù)一導數(shù)幾種常見函數(shù)的導數(shù)由定義求導數(shù)(三步法)步驟:);()()1(xfxxfy?????求增量;)()()2(xxfxxfxy???????算比值.lim)3(0xyyx??????求極限說明:上面的方法中把x換x0即為求函數(shù)在點x0處的導數(shù).
2025-07-25 15:19
【總結(jié)】1第三章復變函數(shù)的積分§解析函數(shù)的高階導數(shù)§解析函數(shù)的高階導數(shù)一、高階導數(shù)定理二、柯西不等式三、劉維爾定理2第三章復變函數(shù)的積分§解析函數(shù)的高階
2025-05-10 14:16