【總結】一、隱函數(shù)求導法二、由參數(shù)方程所確定的函數(shù)的導數(shù)§上頁下頁鈴結束返回首頁上頁下頁鈴結束返回首頁一、隱函數(shù)的導數(shù)?顯函數(shù)與隱函數(shù)下頁(1)顯函數(shù):我們把函數(shù)y可由自變量x的解析式稱為顯函數(shù).)(xfy?也可以確定一個函數(shù),143??yx對
2025-07-23 19:15
【總結】1第三章復變函數(shù)的積分§解析函數(shù)的高階導數(shù)§解析函數(shù)的高階導數(shù)一、高階導數(shù)定理二、柯西不等式三、劉維爾定理2第三章復變函數(shù)的積分§解析函數(shù)的高階
2025-05-10 14:16
【總結】反函數(shù)、復合函數(shù)、參數(shù)方程的求導法則數(shù)學系賀丹導數(shù)的計算2導數(shù)的計算3導數(shù)的計算4導數(shù)的計算5導數(shù)的計算即復合函數(shù)對自變量的導數(shù)等于函數(shù)對中間變量的導數(shù)乘以中間變量對自變量的導數(shù)。6導數(shù)的計算連鎖法則可以推廣到有限個中間變量的情形:7
2025-01-19 10:35
【總結】1第六節(jié)高階導數(shù)一、問題的提出二、主要定理三、典型例題四、小結與思考2一、問題的提出問題:(1)解析函數(shù)是否有高階導數(shù)?(2)若有高階導數(shù),其定義和求法是否與實變函數(shù)相同?回答:(1)解析函數(shù)有各高階導數(shù).(2)高階導數(shù)的值可以用函數(shù)在邊界上的值通過積分來表示
2025-04-30 12:01
【總結】§解析函數(shù)的高階導數(shù)一個解析函數(shù)不僅有一階導數(shù),而且有各高階導數(shù),它的值也可用函數(shù)在邊界上的值通過積分來表示.這一點和實變函數(shù)完全不同.一個實變函數(shù)在某一區(qū)間上可導,它的導數(shù)在這區(qū)間上是否連續(xù)也不一定,更不要說它有高階導數(shù)存在了.定理解析函數(shù)f(z)的導數(shù)仍為解析函數(shù),它的n階導數(shù)為
【總結】?基本求導公式?導數(shù)的四則運算法則?復合函數(shù)的求導法xuxdydyduyyudxdudx???????或或復習[f(?(x))]?=f?(u)??(x)=f?(?(x))??(x)前面我們學習了函數(shù)的各種求導法。顯然y=x2的導數(shù)是y?=2x,而
2025-05-12 21:33
【總結】第十節(jié)一、隱函數(shù)的導數(shù)二、由參數(shù)方程所確定的函數(shù)的導數(shù)隱函數(shù)和由參數(shù)方程所確定的函數(shù)的導數(shù)第二章一、隱函數(shù)的導數(shù)1.定義注1°所確定是由若0),()()(???yxFDxxyy;則)(0)](,[DxxyxF??隱函數(shù),中可由若隱函數(shù)0),()()(???yxFDxxyy
2025-07-24 06:11
【總結】五233|7???xdxdyxyy求設例dxdyyx求設例,2522??dxdyxyyx求設例,13432???dxdyxyx求設例,9532???一、隱函數(shù)的導數(shù)定義:.)(稱為隱函數(shù)由方程所確定的函數(shù)xyy?.)(形式稱為顯函數(shù)xfy?0),(?yxF)(xfy?隱函數(shù)的顯化
2025-07-24 06:05
【總結】?y=f(u),u=(x)?y=f((x))一般的可分解為y=sinu,u=(2x+3)課前復習復合函數(shù)可分解為y=sin(2x+3)?令u=(2x+3)則y=sinu所以復合函數(shù)可分解為:y
2025-05-14 23:10
【總結】上一頁下一頁返回首頁湘潭大學數(shù)學與計算科學學院1由參數(shù)方程所確定的函數(shù)的求導法則一、求導法則二、典型例題三、小結上一頁下一頁返回首頁湘潭大學數(shù)學與計算科學學院2(),().xtyxyt???????若參數(shù)方程確定與由參數(shù)方程間的所確
2025-07-24 03:18
【總結】第六節(jié)高階導數(shù)一、問題的提出二、主要定理三、典型例題四、小結與思考2一、問題的提出問題:(1)解析函數(shù)是否有高階導數(shù)?(2)若有高階導數(shù),其定義和求法是否與實變函數(shù)相同?回答:(1)解析函數(shù)有各高階導數(shù).(2)高階導數(shù)的值可以用函數(shù)在邊界上的值通過積分來表示,這與實變函
2025-01-20 03:38
【總結】§高階導數(shù)、高階偏導數(shù)一、高階導數(shù)二、高階偏導數(shù)一、高階導數(shù)的定義問題:變速直線運動的加速度.),(tfs?設)()(tftv??則瞬時速度為的變化率對時間是速度加速度tva?.])([)()(??????tftvta定義.)())((,)()(lim))((,)()(0處的二階導
2025-05-07 12:10
【總結】()基本初等函數(shù)的導數(shù)公式及導數(shù)的運算法則基本初等函數(shù)的導數(shù)公式1.2.()3.4.5.ln6.7.8.nRa?'n'n-1''x'xx'x'a'若f(x)=c,則f(
2025-11-12 01:21
【總結】一、復習目標了解導數(shù)概念的某些實際背景(瞬時速度,加速度,光滑曲線切線的斜率等),掌握函數(shù)在一點處的導數(shù)的定義和導數(shù)的幾何意義,理解導數(shù)的概念,熟記常見函數(shù)的導數(shù)公式c,xm(m為有理數(shù)),sinx,cosx,ex,ax,lnx,logax的導數(shù),并能熟練應用它們求有關導數(shù).二、重點解析
2025-11-02 02:10
2025-08-05 05:46