【總結(jié)】第十節(jié)一、隱函數(shù)的導(dǎo)數(shù)二、由參數(shù)方程所確定的函數(shù)的導(dǎo)數(shù)隱函數(shù)和由參數(shù)方程所確定的函數(shù)的導(dǎo)數(shù)第二章一、隱函數(shù)的導(dǎo)數(shù)1.定義注1°所確定是由若0),()()(???yxFDxxyy;則)(0)](,[DxxyxF??隱函數(shù),中可由若隱函數(shù)0),()()(???yxFDxxyy
2025-07-24 06:11
【總結(jié)】反函數(shù)、復(fù)合函數(shù)、參數(shù)方程的求導(dǎo)法則數(shù)學(xué)系賀丹導(dǎo)數(shù)的計算2導(dǎo)數(shù)的計算3導(dǎo)數(shù)的計算4導(dǎo)數(shù)的計算5導(dǎo)數(shù)的計算即復(fù)合函數(shù)對自變量的導(dǎo)數(shù)等于函數(shù)對中間變量的導(dǎo)數(shù)乘以中間變量對自變量的導(dǎo)數(shù)。6導(dǎo)數(shù)的計算連鎖法則可以推廣到有限個中間變量的情形:7
2025-01-19 10:35
【總結(jié)】1.隱函數(shù)的導(dǎo)數(shù)隱函數(shù)即由方程0),(?yxF所確定的函數(shù)).(xfy?直接在方程0),(?yxF兩邊對x求導(dǎo)再解出,y?但應(yīng)注意F對變元y求導(dǎo)時,要利用復(fù)合求導(dǎo)法則.2.對數(shù)求導(dǎo)法當(dāng)函數(shù)式較復(fù)雜(含乘、除、乘方、開方、冪指函數(shù)等)時,在方程兩邊取對數(shù),按隱函數(shù)的求
2025-07-24 04:24
【總結(jié)】的函數(shù)的求導(dǎo)一、隱函數(shù)的導(dǎo)數(shù)二、由參數(shù)方程所確定的函數(shù)的導(dǎo)數(shù)返回一、隱函數(shù)的導(dǎo)數(shù)定義:.),(稱為隱函數(shù)由方程所確定的函數(shù)0?yxF.)(形式稱為顯函數(shù)xfy?0),(?yxF)(xfy?隱函數(shù)的顯化問題:隱函數(shù)不易顯化或不能顯化如何求導(dǎo)?隱函數(shù)求導(dǎo)法則:用復(fù)合函數(shù)求導(dǎo)法則直接對方程兩
2025-07-21 12:40
【總結(jié)】主講教師:王升瑞高等數(shù)學(xué)第十四講2第三節(jié)一、隱函數(shù)的導(dǎo)數(shù)三、參數(shù)方程確定的函數(shù)的導(dǎo)數(shù)二、對數(shù)求導(dǎo)法隱函數(shù)與參數(shù)方程求導(dǎo)第二章3一、隱函數(shù)的導(dǎo)數(shù)若由方程可確定y是x的函數(shù),由表示的函數(shù),稱為顯函數(shù).
2025-07-24 08:52
【總結(jié)】返回上頁下頁目錄1第二節(jié)求導(dǎo)法則(續(xù))隱函數(shù)及由參數(shù)方程所確定的函數(shù)的導(dǎo)數(shù)一、隱函數(shù)的導(dǎo)數(shù)三、由參數(shù)方程所確定的函數(shù)的導(dǎo)數(shù)四、初等函數(shù)求導(dǎo)問題二、對數(shù)求導(dǎo)法返回上頁下頁目錄2定義:?當(dāng)時個隱數(shù)方程F(x,y)=
2025-10-07 21:17
【總結(jié)】1糾正作業(yè)P98T8(8)dlnlnln,.dyyxx?求解:1(lnln)lnlnyxx???(ln)x?ln[ln(ln)]yx?11lnlnl(lnn)xxx???111lnlnlnxxx???P98T11(3)22d(arct
2025-07-24 09:56
【總結(jié)】§高階導(dǎo)數(shù)、高階偏導(dǎo)數(shù)一、高階導(dǎo)數(shù)二、高階偏導(dǎo)數(shù)一、高階導(dǎo)數(shù)的定義問題:變速直線運(yùn)動的加速度.),(tfs?設(shè))()(tftv??則瞬時速度為的變化率對時間是速度加速度tva?.])([)()(??????tftvta定義.)())((,)()(lim))((,)()(0處的二階導(dǎo)
2025-05-07 12:10
【總結(jié)】第五節(jié)隱函數(shù)的導(dǎo)數(shù)以及由參數(shù)方程所確定的函數(shù)的導(dǎo)數(shù)?隱函數(shù)的導(dǎo)數(shù)?對數(shù)求導(dǎo)法?由參數(shù)方程所確定的函數(shù)的導(dǎo)數(shù)?小結(jié)一、隱函數(shù)的導(dǎo)數(shù)定義:.)(稱為隱函數(shù)由方程所確定的函數(shù)xyy?.)(形式稱為顯函數(shù)xfy?0),(?yxF)(xfy?隱函數(shù)的顯化問題:隱函數(shù)不易顯化或不能顯化
2025-07-24 06:05
【總結(jié)】第五節(jié)隱函數(shù)及參數(shù)方程確定函數(shù)的導(dǎo)數(shù)一隱函數(shù)求導(dǎo)法二對數(shù)求導(dǎo)法三參數(shù)方程確定函數(shù)的導(dǎo)數(shù)四小結(jié):.稱為隱函數(shù)所確定的函數(shù)由二元方程)(),(xyyyxF?形式稱為顯函數(shù).)(xfy?0),(?yxF)(xfy?隱函數(shù)的顯化問題:隱函數(shù)不易顯化或不能顯化如何求導(dǎo)?如何求導(dǎo)?
2025-07-23 17:58
【總結(jié)】上頁下頁返回退出JlinInstituteofChemicalTechnology一、隱函數(shù)的導(dǎo)數(shù)二、由參數(shù)方程所確定的函數(shù)的導(dǎo)數(shù)§由方程所確定的函數(shù)的導(dǎo)數(shù)三、相關(guān)變化率上頁下頁返回退出JlinInstituteofChemicalTechnology一、隱函數(shù)的導(dǎo)數(shù)v顯函數(shù)與隱
2025-07-25 13:16
【總結(jié)】),(032.75xyyxxyy?????確定的函數(shù)設(shè)由方程例),(,xyyx?注意求導(dǎo)在方程兩邊同時對解:.dxdy求隱函數(shù)的導(dǎo)數(shù)及對數(shù)求導(dǎo)法A.隱函數(shù)的導(dǎo)數(shù)02112564????xdxdydxdyy.2521146???yxdxdy整理得,.03275確定的隱函數(shù)是由方程這里????xxyy
2025-07-24 07:11
【總結(jié)】定義含有未知函數(shù)的導(dǎo)數(shù)或微分的方程,稱為微分方程.未知函數(shù)是一元函數(shù)的微分方程,稱為常微分方程.微分方程中出現(xiàn)的未知函數(shù)導(dǎo)數(shù)(或微分)的最高階數(shù),稱為微分方程的階.一階微分方程的一般形式為0),,(??yyxF.基本概念例如,都是一階微分方程.22xyyy???
2025-10-10 13:27
【總結(jié)】第三章導(dǎo)數(shù)及其應(yīng)用人教A版數(shù)學(xué)第三章導(dǎo)數(shù)及其應(yīng)用人教A版數(shù)學(xué)第三章導(dǎo)數(shù)及其應(yīng)用人教A版數(shù)學(xué)1.知識與技能結(jié)合函數(shù)的圖象,了解函數(shù)在某點(diǎn)取得極值的必要條件和充分條件.2.過程與方法會用導(dǎo)數(shù)求不超過三次的多項
2025-10-10 11:51
【總結(jié)】第18章一、一個方程所確定的隱函數(shù)及其導(dǎo)數(shù)二、方程組所確定的隱函數(shù)組及其導(dǎo)數(shù)§1隱函數(shù)及隱函數(shù)組數(shù)學(xué)分析?2?一.隱函數(shù)概念引例1.10xyy???,),1()1,(???????()yfx?,.11xy??方程當(dāng)
2025-09-25 22:32