【總結(jié)】函數(shù)的極值與導(dǎo)數(shù)(a,b)內(nèi),如果,那么函數(shù)在這個區(qū)間內(nèi)單調(diào)遞增;如果,那么函數(shù)在這個區(qū)間內(nèi)單調(diào)遞減.0)(??xf)(xfy?0)(??xf)(xfy?2.對x∈(a,b),如果
2024-11-12 01:38
【總結(jié)】 您能從這里有所收獲,是我們最大的快樂! 函數(shù)的極值與導(dǎo)數(shù)(教案)一、教學(xué)目標(biāo)1知識與技能〈1〉結(jié)合函數(shù)圖象,了解可導(dǎo)函數(shù)在某點(diǎn)取得極值的必要條件和充分條件〈2〉理解函數(shù)極值的概念,會用導(dǎo)數(shù)求函數(shù)的極大值與極小值2過程與方法結(jié)合實(shí)例,借助函數(shù)圖形直觀感知,并探索函數(shù)的極值與導(dǎo)數(shù)的關(guān)系。3情感與價(jià)值感受導(dǎo)數(shù)在研究函數(shù)性質(zhì)中一般性和有效性,通過
2025-04-16 12:06
【總結(jié)】利用導(dǎo)數(shù)求函數(shù)的極值例求下列函數(shù)的極值:1.;2.;3.分析:按照求極值的基本方法,首先從方程求出在函數(shù)定義域內(nèi)所有可能的極值點(diǎn),然后按照函數(shù)極值的定義判斷在這些點(diǎn)處是否取得極值.解:1.函數(shù)定義域?yàn)镽.令,得.當(dāng)或時(shí),,∴函數(shù)在和上是增函數(shù);當(dāng)時(shí),,∴函數(shù)在(-2,2)上是減函數(shù).∴當(dāng)時(shí),函數(shù)有極大值,當(dāng)時(shí),函數(shù)有極小值2.函數(shù)定義域?yàn)?/span>
2025-05-16 02:04
【總結(jié)】二、高階導(dǎo)數(shù)的運(yùn)算法則第三節(jié)一、高階導(dǎo)數(shù)的概念機(jī)動目錄上頁下頁返回結(jié)束高階導(dǎo)數(shù)與隱函數(shù)的導(dǎo)數(shù)第二章三、隱函數(shù)求導(dǎo)一、高階導(dǎo)數(shù)的概念速度即sv??加速度即)(???sa引例:變速直線運(yùn)動機(jī)動目錄上頁下頁返回
2025-05-12 21:33
【總結(jié)】導(dǎo)數(shù)公式表一、知識新授:1、常數(shù)函數(shù)與冪函數(shù)的導(dǎo)數(shù)公式1:)(0為常數(shù)CC??幾何意義:常數(shù)函數(shù)在任何一點(diǎn)處的切線平行于x軸。練習(xí)2:1x??????????00limlim11xxyfxxfxxfxxxxxxxx???????
2025-08-05 06:14
【總結(jié)】實(shí)驗(yàn)六 多元函數(shù)的極值【實(shí)驗(yàn)?zāi)康摹?.多元函數(shù)偏導(dǎo)數(shù)的求法。2.多元函數(shù)自由極值的求法3.多元函數(shù)條件極值的求法.4.學(xué)習(xí)掌握MATLAB軟件有關(guān)的命令?!緦?shí)驗(yàn)內(nèi)容】求函數(shù)的極值點(diǎn)和極值【實(shí)驗(yàn)準(zhǔn)備】1.計(jì)算多元函數(shù)的自由極值對于多元函數(shù)的自由極值問題,根據(jù)多元函數(shù)極值的必要和充分條件,可分為以下幾個步驟:,得到駐點(diǎn),求出二階偏導(dǎo)數(shù)步
2025-07-26 02:20
【總結(jié)】第一篇:導(dǎo)數(shù)--函數(shù)的極值練習(xí)題 導(dǎo)數(shù)--函數(shù)的極值練習(xí)題 一、選擇題 () ′(x0)=0時(shí),則f(x0)為f(x)的極大值′(x0)=0時(shí),則f(x0)為f(x)的極小值′(x0)=0時(shí),...
2024-10-28 18:46
【總結(jié)】已知:函數(shù)是可導(dǎo)的奇函數(shù),求證:其導(dǎo)函數(shù)是偶函數(shù)。()fx()fx?????????????000()limlimlim()xxxfxxfxfxxfxxfxxfxxfxxfx????
2025-07-25 20:32
【總結(jié)】(4).對數(shù)函數(shù)的導(dǎo)數(shù):.1)(ln)1(xx??.ln1)(log)2(axxa??(5).指數(shù)函數(shù)的導(dǎo)數(shù):.)()1(xxee??).1,0(ln)()2(????aaaaaxxxxcos)(sin1??)((3).三角函數(shù):
2025-01-18 17:16
【總結(jié)】1.3導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用1.3.1函數(shù)的單調(diào)性與導(dǎo)數(shù)本節(jié)重點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性.本節(jié)難點(diǎn):用導(dǎo)數(shù)求函數(shù)單調(diào)區(qū)間的步驟.(5)對數(shù)函數(shù)的導(dǎo)數(shù):.1)(ln)1(xx??.ln1)(log)2(axxa??(4)指數(shù)函數(shù)的導(dǎo)數(shù):.)()1(xx
2024-10-19 11:54
【總結(jié)】第四章初等函數(shù)的導(dǎo)數(shù)與積分4-1對數(shù)函數(shù)的導(dǎo)數(shù)與積分4-2指數(shù)函數(shù)的導(dǎo)數(shù)與積分4-3三角函數(shù)的導(dǎo)數(shù)與積分1.對數(shù)2.對數(shù)微分3.對數(shù)函數(shù)的積分4-1對數(shù)函數(shù)的導(dǎo)數(shù)與積分對數(shù)在對數(shù)函數(shù)f(x)=logax中:(1)若底數(shù)a=10,我們稱其為常用對數(shù)函數(shù),
2025-07-21 19:54
【總結(jié)】對數(shù)函數(shù)與指數(shù)函數(shù)的導(dǎo)數(shù)一、復(fù)習(xí)與引入:1.函數(shù)的導(dǎo)數(shù)的定義與幾何意義....,我們已經(jīng)掌握了初等函數(shù)中的冪函數(shù)、三角函數(shù)的導(dǎo)數(shù),但還缺少指數(shù)函數(shù)、對數(shù)函數(shù)的導(dǎo)數(shù),而這就是我們今天要新學(xué)的內(nèi)容.有了指數(shù)函數(shù)、對數(shù)函數(shù)的導(dǎo)數(shù),也就解決了初等函
2025-05-15 02:15
2025-07-25 05:39
【總結(jié)】一、復(fù)習(xí)目標(biāo)了解導(dǎo)數(shù)概念的某些實(shí)際背景(瞬時(shí)速度,加速度,光滑曲線切線的斜率等),掌握函數(shù)在一點(diǎn)處的導(dǎo)數(shù)的定義和導(dǎo)數(shù)的幾何意義,理解導(dǎo)數(shù)的概念,熟記常見函數(shù)的導(dǎo)數(shù)公式c,xm(m為有理數(shù)),sinx,cosx,ex,ax,lnx,logax的導(dǎo)數(shù),并能熟練應(yīng)用它們求有關(guān)導(dǎo)數(shù).二、重點(diǎn)解析
2025-08-05 05:46
【總結(jié)】()基本初等函數(shù)的導(dǎo)數(shù)公式及導(dǎo)數(shù)的運(yùn)算法則基本初等函數(shù)的導(dǎo)數(shù)公式1.2.()3.4.5.ln6.7.8.nRa?'n'n-1''x'xx'x'a'若f(x)=c,則f(
2024-11-21 01:21