【導讀】的某鄰域內(nèi)有定義,產(chǎn)率和邊際稅率等從數(shù)學角度看就是導數(shù).函數(shù))(xf在點0x處可導?都存在,就說)(xf在閉區(qū)間??.0)(點不可導在函數(shù)???例2.)()(的導數(shù)為常數(shù)求函數(shù)CCxf?
【總結(jié)】主要內(nèi)容典型例題第三章導數(shù)與微分習題課求導法則基本公式導數(shù)xyx????0lim微分dyyx???關(guān)系ddddd()yyyyxyyoxx??????????高階導數(shù)一、
2024-08-30 12:42
【總結(jié)】三、多元函數(shù)的極限二、多元函數(shù)的概念四、多元函數(shù)的連續(xù)性五、小結(jié)思考題第一節(jié)多元函數(shù)的基本概念一、區(qū)域設(shè)),(000yxP是xoy平面上的一個點,?是某一正數(shù),與點),(000yxP距離小于?的點),(yxP的全體,稱為點0P的?鄰域,記為),(
2024-08-30 12:43
【總結(jié)】xyo1.設(shè)()lnfxxx?,若0'()2fx?,則0x?()導數(shù)微積分練習題高二數(shù)學試題第4頁共4頁1.設(shè),若,則()A.B.C.D.2.已知函數(shù),其導函數(shù)的圖象如圖所示,則A.在(-∞,0)上為減函數(shù)B.在
2025-01-07 18:49
【總結(jié)】abxyo??A曲邊梯形由連續(xù)曲線實例1(求曲邊梯形的面積))(xfy?)0)((?xf、x軸與兩條直線ax?、bx?所圍成.第五節(jié)定積分一、問題的提出)(xfy?abxyoabxyo用矩形面積近似取代曲邊梯形面積顯然,小矩形越多,矩形總面
2024-07-31 11:11
【總結(jié)】定義1設(shè)函數(shù))(xf在區(qū)間),[??a上連續(xù),且)()(xfxF??,如果極限????babdxxf)(lim存在,則稱此極限為函數(shù))(xf在無窮區(qū)間),[??a上的反常積分,記作???adxxf)(.???adxxf)(?????babdxxf)(lim當極限存在
2024-07-31 11:10
【總結(jié)】微積分的名稱?Calculus一詞是源自拉丁文,原意是指石子。因為古歐洲人喜歡用石子來幫助計算,所以calculus被引申作計算的意思。?現(xiàn)時醫(yī)學上仍用calculus一詞代表石子。例:acalculousman不是指一位精通微積分的人,而是一位患腎結(jié)石的病人!?微積分這個中文詞,最早見諸清代數(shù)學家李善蘭和英國
2024-09-29 08:13
【總結(jié)】聊聊天微積分的產(chǎn)生——17、18、19世紀的微積分.很久很久以前,在很遠很遠的一塊古老的土地上,有一群智者……開普勒、笛卡爾、卡瓦列里、費馬、帕斯卡、格雷戈里、羅伯瓦爾、惠更斯、巴羅、瓦里斯、牛頓、萊布尼茨、…….任何研究工作的開端,幾乎都是極不完美的嘗試,
2024-08-10 15:02
【總結(jié)】推廣一元函數(shù)微分學二元函數(shù)微分學注意:善于類比,區(qū)別異同二元函數(shù)微積分一、區(qū)域二、二元函數(shù)的概念二元函數(shù)的基本概念區(qū)域平面上滿足某個條件的一切點構(gòu)成的集合。平面點集:平面區(qū)域:由平面上一條或幾條曲線所圍成的部分平面點集稱為平面區(qū)域,通常記作D。0xy1
2024-08-04 01:41
【總結(jié)】北京四中龍門網(wǎng)絡(luò)教育技術(shù)有限公司BeijingEtiantianNetEducationalTechnologyCo.,Ltd讓更多的孩子得到更好的教育2020/12/131導數(shù)的概念北京四中龍門網(wǎng)絡(luò)教育技術(shù)有限公司BeijingEtiantianNetEducationalTechnologyCo.,Ltd讓更多的孩子
2024-11-06 18:56
【總結(jié)】一、問題的提出二、積分上限函數(shù)及其導數(shù)三、牛頓-萊布尼茨公式四、小結(jié)思考題第三節(jié)微積分基本公式變速直線運動中位置函數(shù)與速度函數(shù)的聯(lián)系變速直線運動中路程為21()dTTvtt?設(shè)某物體作直線運動,已知速度)(tvv?是時間間隔],[21TT上t的一個連續(xù)函數(shù),且0)(?tv
2024-08-20 08:39
【總結(jié)】一、偏導數(shù)的定義及其計算方法二、偏導數(shù)的幾何意義及函數(shù)偏導數(shù)存在與函數(shù)連續(xù)的關(guān)系三、高階偏導數(shù)第二節(jié)偏導數(shù)及其在經(jīng)濟分析中的應(yīng)用五、小結(jié)思考題四、偏導數(shù)在經(jīng)濟分析中的應(yīng)用交叉彈性定義設(shè)函數(shù)),(yxfz?在點),(00yx的某一鄰域內(nèi)有定義,
2024-08-20 16:43
【總結(jié)】主要內(nèi)容典型例題第四章中值定理與導數(shù)的應(yīng)用習題課洛必達法則Rolle定理Lagrange中值定理常用的泰勒公式型00,1,0??型???型??0型00型??Cauchy中值定理Taylor中值定理xxF?)()()(bfaf?0?n
2024-08-30 12:46
【總結(jié)】一、問題的提出二、微分方程的定義三、主要問題—求方程的解四、小結(jié)思考題第一節(jié)微分方程的基本概念例1一曲線通過點(1,2),且在該曲線上任一點),(yxM處的切線斜率為x2,求這曲線的方程.解),(xyy?設(shè)所求曲線為d2dyxx?2dyxx??積分,得2,
2024-08-30 12:40
【總結(jié)】分數(shù)階微積分論文:非線性分數(shù)階微積分方程組解的存在唯一性及穩(wěn)定性【中文摘要】分數(shù)微積分不是求分數(shù)的微積分,也不是傳統(tǒng)微積分(微分、積分和變分)的一部分,,但在過去很長時間里,,許多工程人員指出,分數(shù)階微積分非常適用于用于描述各種物理、化學材料的性質(zhì),諸如,,應(yīng)用
2025-01-18 14:34
【總結(jié)】回顧曲邊梯形求面積的問題??badxxfA)(第八節(jié)定積分的幾何應(yīng)用曲邊梯形由連續(xù)曲線)(xfy?)0)((?xf、x軸與兩條直線ax?、bx?所圍成。abxyo)(xfy?abxyo)(xfy?提示若用A?表示任一小區(qū)間],[xx
2025-04-21 04:48