【導讀】則有的反函數(shù)為如果函數(shù)。用復合函數(shù)求導法則直接對方程兩邊求導.二階導數(shù)的導數(shù)稱為三階導數(shù),.d的線性主部叫做函數(shù)增量微分yy?函數(shù)是自變量還是中間變量無論)(,xfyx?
【總結】一、問題的提出二、積分上限函數(shù)及其導數(shù)三、牛頓-萊布尼茨公式四、小結思考題第三節(jié)微積分基本公式變速直線運動中位置函數(shù)與速度函數(shù)的聯(lián)系變速直線運動中路程為21()dTTvtt?設某物體作直線運動,已知速度)(tvv?是時間間隔],[21TT上t的一個連續(xù)函數(shù),且0)(?tv
2025-08-11 08:39
【總結】AP微積分之利用微分求導數(shù) AP微積分作為美國大學一年級的數(shù)學課,大部分高中都會都接觸微積分,并且我國高中的數(shù)學要求高于美國。所以小編建議學習AP微積分建議跟老師學習,因為它畢竟是一門課程?! ??AP微積分課程的三大基本功:求極限,求導數(shù),求積分?! ??在導數(shù)這一部分,高中階段普遍使用導數(shù)規(guī)則來求。但是當同學們學到多元微積分之后,更為有力的工具是全微分,因為它是一次施
2025-08-04 10:38
【總結】1§導數(shù)在經(jīng)濟學中的應用邊際和彈性是經(jīng)濟學中的兩個重要概念。用導數(shù)來研究經(jīng)濟變量的邊際與彈性的方法,稱之為邊際分析與彈性分析。一、邊際分析(離散的經(jīng)濟變量連續(xù)化)()fx?0x0()?fx1、定義8經(jīng)濟學中,把函數(shù)?(x)的導函數(shù)稱為?(x)
2024-10-09 14:57
【總結】一、問題的提出二、微分方程的定義三、主要問題—求方程的解四、小結思考題第一節(jié)微分方程的基本概念例1一曲線通過點(1,2),且在該曲線上任一點),(yxM處的切線斜率為x2,求這曲線的方程.解),(xyy?設所求曲線為d2dyxx?2dyxx??積分,得2,
2025-08-21 12:40
【總結】第四節(jié)高階導數(shù)引例:變速直線運動),(tss?)()(tstv??則瞬時速度為的變化率對時間是速度加速度tva?.])([)()(??????tstvta定義.)())((,)()(lim))((,)()(0處的二階導數(shù)在點為函數(shù)則稱存在即處可導在點的導數(shù)如果函數(shù)xxfxfxxfxxfxf
2025-04-21 04:25
【總結】2022/2/131作業(yè)6(3)(6)(9)(11)(14)(17).9(4)(8)(15)(21).10(8).11(2).12(2).P67習題2022/2/132二、高階導數(shù)第六講
2025-01-16 06:20
【總結】一、偏導數(shù)的定義及其計算方法二、偏導數(shù)的幾何意義及函數(shù)偏導數(shù)存在與函數(shù)連續(xù)的關系三、高階偏導數(shù)第二節(jié)偏導數(shù)及其在經(jīng)濟分析中的應用五、小結思考題四、偏導數(shù)在經(jīng)濟分析中的應用交叉彈性定義設函數(shù)),(yxfz?在點),(00yx的某一鄰域內有定義,
2025-08-11 16:43
【總結】2022/2/131P59習題作業(yè)預習P60—67.P70—788.9(3)(6).11(2)(6).12.13.2022/2/132第五講導數(shù)與微分(一)二、導數(shù)定義與性質五、基本導數(shù)(微分)公式一、引言三、函
2025-01-16 06:28
【總結】第一節(jié)導數(shù)的概念一、導數(shù)概念的引出1.變速直線運動的速度設描述質點運動位置的函數(shù)為0t則到的平均速度為00)()(tttstsv???而在時刻的瞬時速度為00)()(lim0tttstsvtt????221tg
2025-04-21 05:05
【總結】一、平面及其方程二、直線及其方程三、小結思考題第四節(jié)平面與直線一、平面(plane)及其方程(equation)xyzo0MM如果一非零向量垂直于一平面,這向量就叫做該平面的法線向量.法線向量的特征:垂直于平面內的任一向量.已知},,,{CBAn??),,,(000
2025-08-21 12:41
【總結】一、由邊際函數(shù)求原函數(shù)二、由變化率求總量第八節(jié)定積分的經(jīng)濟應用三、收益流的現(xiàn)值和將來值一、由邊際函數(shù)求原函數(shù)25()7Cxx???0()(0)()dxCxCCxx????0251000(7)dxxx????例1已知邊際成本為,固
2025-08-21 12:42
【總結】二、線性微分方程解的結構三、二階常系數(shù)齊次線性方程解法五、小結思考題第五節(jié)二階常系數(shù)線性微分方程四、二階常系數(shù)非齊次線性方程解法一、定義一、定義0??????qyypy二階常系數(shù)齊次線性方程的標準形式)(xfqyypy??????二階常系數(shù)非齊次線性方程的標準形式二、線性微分方程的解的結構
2025-08-21 12:45
【總結】曲率是描述曲線局部性質(彎曲程度)的量。1M3M2??2M2S?1S?MM?1S?2S?NN???弧段彎曲程度越大,轉角越大.轉角相同,弧段越短,彎曲程度越大一、平面曲線的曲率概念1??第十一節(jié)曲線的曲率??????S?S)?.M?.MC0Myxo.s
2025-04-21 04:19
【總結】§高階導數(shù).),()(),()(它的可導性點的函數(shù),仍可以考察內的作為內可導,則它的導函數(shù)在設xbaxfbaxfy??,)()(,)(,)(0000點的二階導數(shù)在點的導數(shù)為在且稱點二階可導在則稱點可導在若xxfyxxfyxxfyxxfy????????.)dd,dd,()(
2025-04-29 02:10
【總結】一、六個基本積分二、待定系數(shù)法舉例三、小結第四節(jié)有理函數(shù)的積分有理函數(shù)的定義:兩個多項式的商表示的函數(shù)稱之為有理函數(shù).mmmmnnnnbxbxbxbaxaxaxaxQxP?????????????11101110)()(??其中m、n
2025-08-21 12:39