【導讀】單調(diào)性,極值與最值,點的函數(shù)值相等,即)()(bfaf?,使得函數(shù))(xf在該。點的導數(shù)等于零,.的精確表達式增量y?求極限來確定未定式的值的方法稱為洛必達法則.型未定式型及⑴??值,極小值可能大于極大值.駐點和不可導點統(tǒng)稱為臨界點.號相同,則)(xf在0x處無極值.x處具有二階導數(shù),x處取得極大值;;0)()2的根求駐點,即方程??在駐點左右的正負號或檢查xfxf???1)建立目標函數(shù);
【總結(jié)】微積分(一)calculus§微分中值定理§洛必達法則§用導數(shù)研究函數(shù)的單調(diào)性、極值、和最值§函數(shù)曲線的凹向及拐點§§第四章中值定理及導數(shù)的應用微積分(一)calculus§微分中值定理一、引言二、微分中值定
2025-01-20 05:32
【總結(jié)】主要內(nèi)容典型例題第十章微分方程與差分方程習題課基本概念一階方程類型4.線性方程可降階方程線性方程解的結(jié)構(gòu)相關定理二階常系數(shù)線性方程解的結(jié)構(gòu)特征方程的根及其對應項f(x)的形式及其特解形式高階方程待
2025-08-11 16:42
【總結(jié)】《高等數(shù)學》Ⅱ—Ⅰ課程教案第三章微分中值定理與導數(shù)的應用本章內(nèi)容是上一章的延續(xù),主要是利用導數(shù)與微分這一方法來分析和研究函數(shù)的性質(zhì)及其圖形和各種形態(tài),這一切的理論基礎即為在微分學中占有重要地位的幾個微分中值定理。在分析、論證過程中,中值定理有著廣泛的應用。一、教學目標與基本要求(一)知識、拉格朗日中值定理、柯西中值定理的條件和結(jié)論;;,sin(x),cos(
2025-06-24 23:00
【總結(jié)】第三單元微分中值定理與導數(shù)應用一、填空題1、__________。2、函數(shù)在區(qū)間______________單調(diào)增。3、函數(shù)的極大值是____________。4、曲線在區(qū)間__________是凸的。5、函數(shù)在處的階泰勒多項式是_________。6、曲線的拐點坐標是_________。7、若在含的(其中)內(nèi)恒有二階負的導數(shù),且_______,則是在上的
2025-08-17 11:37
【總結(jié)】1嬡計艘脊鍬藤殃雖薜腈唱瀲鍘苧晝妾薟革肥堰鏡膳蕕微積分復習嘸篋娑虬岳冶砂崆粗蓯妥七昵鉻豁薇甲脖滁枘3提綱?考試相關?學習內(nèi)容串講?一些作業(yè)中的問題?一些難點綬河概乖螂不嵫嘯痣癱莽憊瑯墳櫪屙林登寤賺米最猗戲巨凇盼幺跽癔椽樂智臚總亭渥剪4復習備考1-網(wǎng)絡輔助
2025-10-25 21:17
【總結(jié)】一、定積分的元素法二、平面圖形的面積第七節(jié)定積分的幾何應用三、旋轉(zhuǎn)體的體積四、平行截面面積已知的立體的體積五、小結(jié)回顧曲邊梯形求面積的問題()dbaAfxx??一、定積分的元素法曲邊梯形由連續(xù)曲線)(xfy?)0)((?xf、x軸與兩條直線ax?、bx?所圍
【總結(jié)】變速直線運動中位置函數(shù)與速度函數(shù)的聯(lián)系變速直線運動中路程為?21)(TTdttv設某物體作直線運動,已知速度)(tvv?是時間間隔],[21TT上t的一個連續(xù)函數(shù),且0)(?tv,求物體在這段時間內(nèi)所經(jīng)過的路程.另一方面這段路程可表示為)()(12TsTs?第六節(jié)微積分基本定理一、問題
2025-07-22 11:18
【總結(jié)】第一節(jié)導數(shù)的概念一、導數(shù)概念的引出1.變速直線運動的速度設描述質(zhì)點運動位置的函數(shù)為0t則到的平均速度為00)()(tttstsv???而在時刻的瞬時速度為00)()(lim0tttstsvtt????221tg
2025-04-21 05:05
【總結(jié)】2022/2/131作業(yè)P88習題5(1).7.8(2)(4).9(1).10(3).P122綜合題:4.5.復習:P80——88預習:P89——952022/2/132應用導數(shù)研究函數(shù)性態(tài)局部性態(tài)—未定型極限
2025-01-16 06:48
【總結(jié)】一、問題的提出二、積分上限函數(shù)及其導數(shù)三、牛頓-萊布尼茨公式四、小結(jié)思考題第三節(jié)微積分基本公式變速直線運動中位置函數(shù)與速度函數(shù)的聯(lián)系變速直線運動中路程為21()dTTvtt?設某物體作直線運動,已知速度)(tvv?是時間間隔],[21TT上t的一個連續(xù)函數(shù),且0)(?tv
2025-08-11 08:39
【總結(jié)】題型、函數(shù)、導數(shù)、積分綜合性的使用微分中值定理寫出證明題,利用洛比達法則,進行計算,計算導數(shù),求函數(shù)的單調(diào)性以及極值、最值,進行二階求導,求函數(shù)的凹凸區(qū)間以及拐點,利用極限的性質(zhì),求漸近線的方程內(nèi)容一.中值定理二.洛比達法則一些類型(、、、、、、等)三.函數(shù)的單調(diào)性與極值四.函數(shù)的凹凸性與拐點五.函數(shù)的漸近線水平漸近
2025-03-25 01:54
【總結(jié)】第四節(jié)高階導數(shù)引例:變速直線運動),(tss?)()(tstv??則瞬時速度為的變化率對時間是速度加速度tva?.])([)()(??????tstvta定義.)())((,)()(lim))((,)()(0處的二階導數(shù)在點為函數(shù)則稱存在即處可導在點的導數(shù)如果函數(shù)xxfxfxxfxxfxf
2025-04-21 04:25
【總結(jié)】第三章微分中值定理與導數(shù)的應用主講人:張少強TianjinNormalUniversity計算機與信息工程學院三、其他未定式二、型未定式一、型未定式00第二節(jié)洛必達法則微分中值定理函數(shù)的性態(tài)導數(shù)的性態(tài)函數(shù)之商的極限導數(shù)之商的極限轉(zhuǎn)化(或
2025-07-20 16:17
【總結(jié)】一、全微分二、全微分在近似計算中的應用三、小結(jié)思考題第三節(jié)全微分及其應用),(),(yxfyxxf???xyxfx??),(),(),(yxfyyxf???yyxfy??),(二元函數(shù)對x和對y的偏微分(partialdifferential)二元函數(shù)對
2025-08-11 16:43
【總結(jié)】備考基礎·查清熱點命題·悟通遷移應用·練透課堂練通考點課下提升考能首頁上一頁下一頁末頁結(jié)束數(shù)學第十二節(jié)定積分與微積分基本定理1.定積分的概念第十二節(jié)定積分與微積分基本定理在????abf(x)dx中,
2024-11-23 12:12