【總結(jié)】第二節(jié)偏導(dǎo)數(shù)一、偏導(dǎo)數(shù)的概念二、偏導(dǎo)數(shù)的求法三、高階偏導(dǎo)數(shù)一、偏導(dǎo)數(shù)的概念定義設(shè)函數(shù)z=f(x,y)在點(diǎn)(x0,y0)的某一鄰域內(nèi)有定義,當(dāng)y固定在y0,而x在x0處有增量△x時(shí),相應(yīng)函數(shù)有增量).,(),(0000yxfyxxf???如果極限xyxfyxxfx??????),()
2025-08-01 13:06
【總結(jié)】1小結(jié)思考題作業(yè)空間曲線的切線與法平面曲面的切平面與法線第九節(jié)偏導(dǎo)數(shù)在幾何上的應(yīng)用第八章多元函數(shù)微分法及其應(yīng)用2一、空間曲線的切線與法平面1.空間曲線的方程為參數(shù)方程設(shè)空間曲線的方程()()()(),rrttitjtkt?????????
2025-05-13 14:48
【總結(jié)】定義設(shè)函數(shù)),(yxfz?在點(diǎn)),(00yx的某一鄰域內(nèi)有定義,當(dāng)y固定在0y而x在0x處有增量x?時(shí),相應(yīng)地函數(shù)有增量),(),(0000yxfyxxf???,如果xyxfyxxfx??????),(),(lim00000存在,則稱此極限為函
2025-07-17 22:53
【總結(jié)】§6偏導(dǎo)數(shù)的幾何應(yīng)用◇空間曲線的切線與法平面◇曲面的切平面與法線復(fù)習(xí):平面曲線的切線與法線已知平面光滑曲線),(00yx切線方程0yy?法線方程0yy?若平面光滑曲線方程為),(),(ddyxFyxFxyyx??故在點(diǎn)切線方程法線方程
2025-07-21 17:31
【總結(jié)】1§?一、多元函數(shù)的極值與最值?二、條件極值?三、最小二乘法*2二元函數(shù)極值的定義?設(shè)函數(shù)z=f(x,y)在點(diǎn)(x0,y0)的某鄰域內(nèi)有定義,對于該鄰域內(nèi)異于(x0,y0)的點(diǎn)(x,y):若滿足不等式f(x,y)f(x0,y0),則稱函數(shù)在(x0,y0)有極大值;若滿足不等式f(x,y)
2025-01-08 13:30
【總結(jié)】第三節(jié)偏導(dǎo)數(shù)一、平面區(qū)域的概念三、二元函數(shù)的概念四、二元函數(shù)的極限五、二元函數(shù)的連續(xù)性二、維空間的概念n定義設(shè)函數(shù)),(yxfz?在點(diǎn)),(00yx的某一鄰域內(nèi)有定義,當(dāng)y固定在0y而x在0x處有增量x?
2024-09-28 14:38
【總結(jié)】一、偏導(dǎo)數(shù)的概念二、高階偏導(dǎo)數(shù)三、可微與偏導(dǎo)數(shù)的關(guān)系*多元函數(shù)的偏導(dǎo)數(shù)和全微分四、全微分在二元函數(shù)z=f(x,y)中,有兩個(gè)自變量x,y,但若固定其中一個(gè)自變量,比如,令y=y0,而讓x變化.則z成為一元函數(shù)z=f(x,y0),我們可用討論一元函數(shù)的方法來討論它
2025-08-04 18:32
【總結(jié)】課時(shí)教案授課章節(jié)及題目偏導(dǎo)數(shù)與全微分(1)授課時(shí)間周二第3、4節(jié)課次1學(xué)時(shí)2教學(xué)目標(biāo)與要求1、了解二元函數(shù)偏導(dǎo)數(shù)的定義2、掌握求二元函數(shù)偏導(dǎo)數(shù)的方法教學(xué)重點(diǎn)與難點(diǎn)教學(xué)重點(diǎn):二元函數(shù)偏導(dǎo)數(shù)的求法教學(xué)難點(diǎn):二元函數(shù)偏導(dǎo)數(shù)的定義教學(xué)用具無教學(xué)過程環(huán)節(jié)、時(shí)間授課內(nèi)容教學(xué)方法課程導(dǎo)入(5分
2025-08-05 01:51
【總結(jié)】§偏導(dǎo)數(shù)及其經(jīng)濟(jì)應(yīng)用教學(xué)目的:理解并掌握偏導(dǎo)數(shù)概念,能正確求出所給函數(shù)的偏導(dǎo)數(shù)和高階偏導(dǎo)數(shù).了解偏導(dǎo)數(shù)的幾何意義.了解偏導(dǎo)數(shù)在經(jīng)濟(jì)分析中的應(yīng)用.重點(diǎn):正確求出所給函數(shù)的偏導(dǎo)數(shù)與高階偏導(dǎo)數(shù).難點(diǎn):分清常量與變量,正確運(yùn)用一元函數(shù)導(dǎo)數(shù)公式求函數(shù)的偏導(dǎo)數(shù).教學(xué)方法:啟發(fā)式講授與指導(dǎo)練習(xí)相結(jié)合教學(xué)過程:一、偏導(dǎo)數(shù)的定義及其計(jì)算方法(全改變
2025-06-19 21:30
【總結(jié)】推廣一元函數(shù)微分學(xué)二元函數(shù)微分學(xué)注意:善于類比,區(qū)別異同二元函數(shù)微積分一、區(qū)域二、二元函數(shù)的概念二元函數(shù)的基本概念區(qū)域平面上滿足某個(gè)條件的一切點(diǎn)構(gòu)成的集合。平面點(diǎn)集:平面區(qū)域:由平面上一條或幾條曲線所圍成的部分平面點(diǎn)集稱為平面區(qū)域,通常記作D。0xy1
2025-07-26 01:41
【總結(jié)】數(shù)學(xué)建模培訓(xùn)一階偏微分方程模型2偏微分方程的相關(guān)概念?偏微分方程:一個(gè)包含有多元未知函數(shù)及其偏導(dǎo)數(shù)的等式。方程中所含未知函數(shù)偏導(dǎo)數(shù)的最高階數(shù)稱為該方程的階。如:222220,0uuuutxxy????????????等。如果方程關(guān)于未知函數(shù)及其各階偏導(dǎo)數(shù)是線性的
2024-11-03 20:37
【總結(jié)】上頁下頁返回§二元函數(shù)的偏導(dǎo)數(shù)與全微分一、偏導(dǎo)數(shù)二、高階偏導(dǎo)數(shù)三、全微分上頁下頁返回一、偏導(dǎo)數(shù)定義1設(shè)函數(shù)(,)zfxy?在點(diǎn)00(,)xy的某一鄰域內(nèi)有定義,當(dāng)y固定在0y而x在0x處有增量x?時(shí),相應(yīng)地函數(shù)有增量
2025-07-25 16:45
【總結(jié)】1高階導(dǎo)數(shù)的定義萊布尼茨(Leibniz)公式小結(jié)思考題作業(yè)§高階導(dǎo)數(shù)第二章導(dǎo)數(shù)與微分幾個(gè)基本初等函數(shù)的n階導(dǎo)數(shù)2問題:變速直線運(yùn)動的加速度.),(tss?設(shè))()(tstv??則瞬時(shí)速度為是加速度a???)(ta定義)()(xfxf?的導(dǎo)數(shù)如果函數(shù)
2025-01-17 09:00
【總結(jié)】河海大學(xué)理學(xué)院《高等數(shù)學(xué)》高等數(shù)學(xué)(上)河海大學(xué)理學(xué)院《高等數(shù)學(xué)》第二章導(dǎo)數(shù)與微分高等數(shù)學(xué)(上)河海大學(xué)理學(xué)院《高等數(shù)學(xué)》問題:變速直線運(yùn)動的加速度.),(tfs?設(shè))()(tftv??則瞬時(shí)速度為的變化率對時(shí)間是速度加速度tva?.])([)()(??????tftv
2025-05-07 12:10
【總結(jié)】偏導(dǎo)數(shù)與全微分習(xí)題1.設(shè),求。2.習(xí)題817題。3.設(shè),考察f(x,y)在點(diǎn)(0,0)的偏導(dǎo)數(shù)。4.考察在點(diǎn)(0,0)處的可微性。5.證明函數(shù)在點(diǎn)(0,0)連續(xù)且偏導(dǎo)數(shù)存在,但偏導(dǎo)數(shù)在(0,0)不連續(xù),而f(x,y)在點(diǎn)(0,0)可微。1.設(shè),求。∴。
2025-07-24 22:32