【摘要】1/27一、空間曲線的切線與法平面二、曲面的切平面與法線第七節(jié)偏導數(shù)的幾何應用三、小結(jié)四、作業(yè)2/27設(shè)空間曲線的方程)1()()()(????????tzztyytxx(1)式中的三個函數(shù)均可導.M?.),,(0000tttzzyyxx
2025-06-23 03:16
【摘要】第五節(jié)高階偏導數(shù)本節(jié)主要講兩個問題:一、什么是高階偏導數(shù)二、在什么條件下混合偏導數(shù)相等多元函數(shù)的高階偏導數(shù)與一元函數(shù)的高階導數(shù)類似:一般情況下,函數(shù)的偏導數(shù)還是的函數(shù),如果的偏導數(shù)還存在,則稱它們的偏導數(shù)為的二階偏導數(shù).即:函數(shù)一階偏導數(shù)的偏導數(shù),稱為原來函數(shù)的二階偏導數(shù).函數(shù)二階偏導數(shù)
2025-06-17 18:09
【摘要】March2022RevisedFeb,2022偏導數(shù)PartialDerivativesMarch2022RevisedFeb,2022一、偏導數(shù)的定義與計算March2022RevisedFeb,2022二元函數(shù)的偏導數(shù)0000(,)(,)xzfxxyfxy?
2025-03-08 14:35
【摘要】第八章習題課機動目錄上頁下頁返回結(jié)束一、基本概念二、多元函數(shù)微分法三、多元函數(shù)微分法的應用多元函數(shù)微分法一、基本概念連續(xù)性偏導數(shù)存在方向?qū)?shù)存在可微性1.多元函數(shù)的定義、極限、連續(xù)?定義域及對應規(guī)律?判斷極限不存在及求
2024-09-15 18:11
【摘要】§偏導數(shù)一、偏導數(shù)的定義及其計算法二、高階偏導數(shù)一、偏導數(shù)的定義及其計算法類似地,可定義函數(shù)z?f(x,y)在點(x0,y0)處對y的偏導數(shù).?偏導數(shù)的定義設(shè)函數(shù)z?f(x,y)在點(x0,y0)的某一鄰域內(nèi)有定義,若極限xyxfyxxfx?
2024-09-05 18:29
【摘要】返回后頁前頁§1可微性與偏導數(shù)本節(jié)首先討論二元函數(shù)的可微性,這是多元函數(shù)微分學最基本的概念.然后給出對單個自變量的變化率,即偏導數(shù).偏導數(shù)無論在理論上或在應用上都起著關(guān)鍵性的作用.四、可微性的幾何意義及應用返回一、可微性與全微分二、偏導數(shù)三、可微性條件返回
2024-09-04 02:49
【摘要】第二節(jié)偏導數(shù)一、偏導數(shù)的概念二、偏導數(shù)的求法三、高階偏導數(shù)一、偏導數(shù)的概念定義設(shè)函數(shù)z=f(x,y)在點(x0,y0)的某一鄰域內(nèi)有定義,當y固定在y0,而x在x0處有增量△x時,相應函數(shù)有增量).,(),(0000yxfyxxf???如果極限xyxfyxxfx??????),()
2024-09-11 13:06
【摘要】1小結(jié)思考題作業(yè)空間曲線的切線與法平面曲面的切平面與法線第九節(jié)偏導數(shù)在幾何上的應用第八章多元函數(shù)微分法及其應用2一、空間曲線的切線與法平面1.空間曲線的方程為參數(shù)方程設(shè)空間曲線的方程()()()(),rrttitjtkt?????????
2025-07-16 14:48
【摘要】定義設(shè)函數(shù)),(yxfz?在點),(00yx的某一鄰域內(nèi)有定義,當y固定在0y而x在0x處有增量x?時,相應地函數(shù)有增量),(),(0000yxfyxxf???,如果xyxfyxxfx??????),(),(lim00000存在,則稱此極限為函
2024-08-27 22:53
【摘要】§6偏導數(shù)的幾何應用◇空間曲線的切線與法平面◇曲面的切平面與法線復習:平面曲線的切線與法線已知平面光滑曲線),(00yx切線方程0yy?法線方程0yy?若平面光滑曲線方程為),(),(ddyxFyxFxyyx??故在點切線方程法線方程
2024-08-31 17:31
【摘要】1§?一、多元函數(shù)的極值與最值?二、條件極值?三、最小二乘法*2二元函數(shù)極值的定義?設(shè)函數(shù)z=f(x,y)在點(x0,y0)的某鄰域內(nèi)有定義,對于該鄰域內(nèi)異于(x0,y0)的點(x,y):若滿足不等式f(x,y)f(x0,y0),則稱函數(shù)在(x0,y0)有極大值;若滿足不等式f(x,y)
2025-02-25 13:30
【摘要】第三節(jié)偏導數(shù)一、平面區(qū)域的概念三、二元函數(shù)的概念四、二元函數(shù)的極限五、二元函數(shù)的連續(xù)性二、維空間的概念n定義設(shè)函數(shù)),(yxfz?在點),(00yx的某一鄰域內(nèi)有定義,當y固定在0y而x在0x處有增量x?
2024-12-01 14:38
【摘要】一、偏導數(shù)的概念二、高階偏導數(shù)三、可微與偏導數(shù)的關(guān)系*多元函數(shù)的偏導數(shù)和全微分四、全微分在二元函數(shù)z=f(x,y)中,有兩個自變量x,y,但若固定其中一個自變量,比如,令y=y0,而讓x變化.則z成為一元函數(shù)z=f(x,y0),我們可用討論一元函數(shù)的方法來討論它
2024-09-14 18:32
【摘要】課時教案授課章節(jié)及題目偏導數(shù)與全微分(1)授課時間周二第3、4節(jié)課次1學時2教學目標與要求1、了解二元函數(shù)偏導數(shù)的定義2、掌握求二元函數(shù)偏導數(shù)的方法教學重點與難點教學重點:二元函數(shù)偏導數(shù)的求法教學難點:二元函數(shù)偏導數(shù)的定義教學用具無教學過程環(huán)節(jié)、時間授課內(nèi)容教學方法課程導入(5分
2024-09-15 01:51
【摘要】§偏導數(shù)及其經(jīng)濟應用教學目的:理解并掌握偏導數(shù)概念,能正確求出所給函數(shù)的偏導數(shù)和高階偏導數(shù).了解偏導數(shù)的幾何意義.了解偏導數(shù)在經(jīng)濟分析中的應用.重點:正確求出所給函數(shù)的偏導數(shù)與高階偏導數(shù).難點:分清常量與變量,正確運用一元函數(shù)導數(shù)公式求函數(shù)的偏導數(shù).教學方法:啟發(fā)式講授與指導練習相結(jié)合教學過程:一、偏導數(shù)的定義及其計算方法(全改變
2025-08-06 21:30