【總結(jié)】§平面與平面垂直的判定一、教材分析在空間平面與平面之間的位置關(guān)系中,垂直是一種非常重要的位置關(guān)系,它不僅應(yīng)用較多,而且是空間問題平面化的典范.空間中平面與平面垂直的定義是通過二面角給出的,二面角是高考中的重點和難點.使學(xué)生掌握兩個平面互相垂直的判定,提高學(xué)生空間想象能力,提高等價轉(zhuǎn)化思想滲透的意識,進(jìn)一步提高學(xué)生分析問題、解決問題的
2024-12-03 11:32
【總結(jié)】平面向量,設(shè)a=(x1,y1),b=(x2,y2),為實數(shù)。(1)向量式:a∥b(b≠0)a=b;(2)坐標(biāo)式:a∥b(b≠0)x1y2-x2y1=0;,設(shè)a=(x1,y1),b=(x2,y2),(1)向量式:a⊥b(b≠0)ab=0;(2)坐標(biāo)式:a⊥bx1x2+y1y2=0;=(x1,y1),b=(x2,y2),則ab==x1x2+y1y2;其幾何意義是ab等于a的長度與b
2025-04-04 05:05
【總結(jié)】第二章平面向量平面向量的實際背景及基本概念1.了解向量的實際背景,以位移、力等物理背景抽象出向量.(重點)2.理解向量、相等向量的概念及向量的幾何表示.(難點)3.掌握向量的概念及共線向量的概念.(重點、易混點)1.向量的概念向量的兩個要素:(1)大小;(2)______.2.向
2024-11-19 19:09
【總結(jié)】平面向量基本定理考查知識點及角度難易度及題號基礎(chǔ)中檔稍難基底及用基底表示向量1、36、8、9向量夾角問題2、4綜合問題57、10111.已知e1和e2是表示平面內(nèi)所有向量的一組基底,那么下面四組向量中不能作為一組基底的是()A.e1和e1+e2B.e
2024-11-19 19:36
【總結(jié)】平面向量共線的坐標(biāo)表示學(xué)習(xí)目標(biāo):1.理解用坐標(biāo)表示的平面向量共線的條件.2.能根據(jù)平面向量的坐標(biāo),判斷向量是否共線.3.掌握三點共線的判斷方法.【學(xué)法指導(dǎo)】1.應(yīng)用平面向量共線條件的坐標(biāo)表示來解決向量的共線問題優(yōu)點在于不需要引入?yún)?shù)“λ”,從而減少了未知數(shù)的個數(shù),而且使問題具有代數(shù)化的特點、程序
2024-11-19 20:38
【總結(jié)】平面向量的坐標(biāo)一、教學(xué)目標(biāo):(1)掌握平面向量正交分解及其坐標(biāo)表示.(2)會用坐標(biāo)表示平面向量的加、減及數(shù)乘運算.(3)理解用坐標(biāo)表示的平面向量共線的條件.教材利用正交分解引出向量的坐標(biāo),在此基礎(chǔ)上得到平面向量線性運算的坐標(biāo)表示及向量平行的坐標(biāo)表示;最后通過講解例題,鞏固知識結(jié)論,培養(yǎng)學(xué)生應(yīng)用能力.通過本節(jié)內(nèi)
2024-11-19 23:18
【總結(jié)】第一頁,編輯于星期六:點三十二分。,2.1平面向量的實際背景及基本概念,第二頁,編輯于星期六:點三十二分。,,登高攬勝拓界展懷,課前自主學(xué)習(xí),第三頁,編輯于星期六:點三十二分。,第四頁,編輯于星期六:...
2024-10-22 18:47
【總結(jié)】平面向量的實際背景及基本概念一、向量中有關(guān)概念的辨析、向量、有向線段對這幾個概念的理解容易出現(xiàn)概念不清的問題.數(shù)量只有大小,沒有方向,其大小可以用實數(shù)來表示,它是一個代數(shù)量,數(shù)量之間可以比較大小;向量既有大小又有方向,向量之間不可以比較大小;有向線段是向量的直觀性表示,不能說向量就是有向線段.、共線向量、相等向量平行向量也
2024-11-19 20:39
【總結(jié)】平面向量的實際背景及基本概念1.下列說法正確的是()A.方向相同或相反的向量是平行向量B.零向量的長度是0C.長度相等的向量叫相等向量D.共線向量是在同一條直線上的向量解析:對A,由于0與任意向量平行,所以A錯誤;對B,零向量的長度是0,正確;對C,長度相等的向量方向不一定相同,故C錯誤;對D,共線向量不一定在同
【總結(jié)】平面向量基本定理1.設(shè)O點是平行四邊形ABCD兩對角線的交點,下列向量組中可作為這個平行四邊形所在平面上表示其他所有向量的基底的是()①AD→與AB→;②DA→與BC→;③CA→與DC→;④OD→與OB→.A.①②B.①③C.①④D.③④解析:只要是平面上不共線的兩個向量
【總結(jié)】關(guān)于《平面向量基本定理》的課后反思當(dāng)前,新課程的改革與素質(zhì)教育工作已全面展開,它對教育、教學(xué)不斷提出更新、更高的要求,而課堂教學(xué)是教育教學(xué)的主陣地,那種以老師講解為主,使學(xué)生常常處于消極、被動、受壓抑的狀態(tài),既不能充分地調(diào)動學(xué)生的主動性、積極性,又不能很好地培養(yǎng)學(xué)生的各方面能力的傳統(tǒng)灌輸教學(xué)法與新課程的改革理念及“以學(xué)生為本”的教學(xué)思想已是格格不入。所以課堂教學(xué)
【總結(jié)】平面向量應(yīng)用舉例考查知識點及角度難易度及題號基礎(chǔ)中檔稍難向量在物理中的應(yīng)用1、3、59向量在幾何中的應(yīng)用6、7、10綜合運用2、48111.若向量OF1→=(1,1),OF2→=(-3,-2)分別表示兩個力F1,F(xiàn)2,則|F1+F2|為()A.10
【總結(jié)】......高中數(shù)學(xué)(平面向量)綜合練習(xí)含解析1.在中,,.若點滿足,則()A.B.C.D.2.已知,,點C在內(nèi),且,,則等于()20090420A.
【總結(jié)】高中數(shù)學(xué)(平面向量)綜合練習(xí)含解析1.在中,,.若點滿足,則()A.B.C.D.2.已知,,點C在內(nèi),且,,則等于()20090420A.3B.C.D.3.若向量滿足,且,則()A.4B.3C.2
2025-06-07 23:55
【總結(jié)】關(guān)于《平面向量基本定理》的效果分析一、效果總評本節(jié)課運用了“合作探究、分層推進(jìn)教學(xué)法”,使學(xué)生在個人自主學(xué)習(xí)、小組合作探究、全班互相交流、教師點評總結(jié)的交互推動下,主動學(xué)習(xí),積極參與,全面合作,廣泛交流。教師營造了民主、平等、互動、開放的學(xué)習(xí)、交流氛圍,較好地發(fā)揮了促進(jìn)者、指導(dǎo)者和合作者的作用,引領(lǐng)學(xué)生通過對各類有層次的問題的思考、探究、交流、解