【總結(jié)】…………○…………內(nèi)…………○…………裝…………○…………訂…………○…………線…………○…………學(xué)校:___________姓名:________班級:________考號:________…………○…………外…………○…………裝…………○…………訂…………○…………線…………○…………絕密★啟用前2018年01月19日214****9063的高中數(shù)學(xué)組卷試卷副標(biāo)題
2025-03-25 01:22
【總結(jié)】§平面向量的數(shù)量積一、選擇題1.若向量a,b,c滿足a∥b且a⊥c,則c·(a+2b)=( )A.4 B.3C.2 D.0解析:由a∥b及a⊥c,得b⊥c,則c·(a+2b)=c·a+2c·b=0.答案:D2.若向量a與
【總結(jié)】第三節(jié)平面向量的數(shù)量積及平面向量應(yīng)用舉例解分析用數(shù)量積和模的定義以及運算性質(zhì),逐題計算.79642)(||)4(3427158||3120cos||||5||2352)3()2)(3(.594||||2.32132120cos||||12222o2222222o???????????
2024-11-11 09:01
【總結(jié)】坐標(biāo)表示、模、夾角復(fù)習(xí)引入1.平面向量的數(shù)量積(內(nèi)積)的定義:復(fù)習(xí)引入1.平面向量的數(shù)量積(內(nèi)積)的定義:.)(cos||||或內(nèi)積的數(shù)量積與叫做,我們把數(shù)量夾角為它們的,和已知兩個非零向量bababa??復(fù)習(xí)引入1.平面向量的數(shù)量積
2024-10-18 14:26
【總結(jié)】“平面向量”誤區(qū)警示“平面向量”概念繁多容易混淆,對于初學(xué)者更是一頭霧水.現(xiàn)將與平面向量基本概念相關(guān)的誤區(qū)整理如下.⑴向量就是有向線段解析:向量常用一條有向線段來表示,有向線段的長度表示向量的大小,箭頭所指的方向表示向量的方向.有向線段是向量的一種表示方法,不能說向量就是有向線段.⑵若向量與相等,則有向線段AB與CD重合解析:長度相等且方向相同的向量叫做相等向量.因此,
2025-04-16 23:21
【總結(jié)】平面向量數(shù)量積的坐標(biāo)表示四川省沐川中學(xué)劉少民平面向量數(shù)量積復(fù)習(xí)a和b,它們的夾角為θ,則a&
2024-11-09 05:07
【總結(jié)】......平面向量數(shù)量積運算題型一 平面向量數(shù)量積的基本運算例1 (1)(2014·天津)已知菱形ABCD的邊長為2,∠BAD=120°,點E,F(xiàn)分別在邊BC,DC上,BC=3BE,DC=·=1,則λ的值為
2025-06-25 14:47
【總結(jié)】平面向量數(shù)量積求解的三種途徑平面向量數(shù)量積是平面向量一章中的重要內(nèi)容,是高中數(shù)學(xué)三角函數(shù)、平面幾何、解析幾何等章節(jié)知識的交匯點,也是高考重點考查的知識.許多學(xué)生在解此類題時感覺困難,究其原因,就是學(xué)生對數(shù)量積的概念理解不透徹.下面就求解方法歸納如下:一.定義法例1 已知直線與圓交于兩點,是坐標(biāo)原點,求的值.分析 向量,的模都是2,由直線與圓相交時弦心距、半
2025-06-19 23:26
【總結(jié)】平面向量數(shù)量積的坐標(biāo)表示、模、夾角一.復(fù)習(xí)回顧:問題:回憶一下,向量的數(shù)量積?又如何用數(shù)量積、長度來反映夾角?向量的運算律有哪些?平面向量的數(shù)量積有那些性質(zhì)?答案:babababa????????cos,cos運算律有:)()().(2bababa????????abba??
2025-01-20 04:59
【總結(jié)】《平面向量數(shù)量積的坐標(biāo)表示、模、夾角》說課稿 一、教材分析 :平面向量數(shù)量積的坐標(biāo)表示,就是運用坐標(biāo)這一量化工具表達向量的數(shù)量積運算,為研究平面中的距離、垂直、角度等問題提供了全新的手段。它把向量...
2024-12-03 02:07
【總結(jié)】平面向量數(shù)量積的坐標(biāo)表示、模、夾角(教案)教學(xué)目標(biāo)1.知識目標(biāo):⑴掌握平面向量數(shù)量積的坐標(biāo)表達式,會進行平面向量數(shù)量積的運算;⑵掌握平面向量的模的坐標(biāo)公式以及平面內(nèi)兩點間的距離公式;⑶掌握兩個平面向量的夾角的坐標(biāo)公式;⑷能用平面向量數(shù)量積的坐標(biāo)公式判斷兩個平面向量的垂直關(guān)系;2.能力目標(biāo):⑴培養(yǎng)學(xué)生的動手能力和探索能力;⑵通過平面向量數(shù)量積的數(shù)與
2025-04-17 01:40
【總結(jié)】平面向量數(shù)量積運算題型一 平面向量數(shù)量積的基本運算例1 (1)(2014·天津)已知菱形ABCD的邊長為2,∠BAD=120°,點E,F(xiàn)分別在邊BC,DC上,BC=3BE,DC=·=1,則λ的值為________.(2)已知圓O的半徑為1,PA,PB為該圓的兩條切線,A,B為切點,那么·的最小值為( )A.-4+ B.-3+C.-
2025-06-25 14:57
【總結(jié)】a和b,它們的夾角為θ,則a·b=abcos.a·b稱為向量a與b的數(shù)量積(或內(nèi)積).θa·b等于a的長度a與b在a的方向上的投影bcos的乘積.θ6.a·b≤ab.3.a⊥
2024-11-10 08:35
【總結(jié)】平面向量數(shù)量積的坐標(biāo)表示、模、夾角.),1,1(),32,1(1?的夾角與求已知例baba????例2已知A(1,2),B(2,3),C(-2,5),試判斷?ABC的形狀,并給出證明.練習(xí)(1)已知=(4,3),向量是垂直于的單位向量,求.abab
2025-04-24 09:59
【總結(jié)】人教版新課標(biāo)普通高中◎數(shù)學(xué)④必修平面向量的數(shù)量積教案A第1課時教學(xué)目標(biāo)一、知識與技能1.掌握平面向量的數(shù)量積及其幾何意義;2.掌握平面向量數(shù)量積的重要性質(zhì)及運算律;3.了解用平面向量的數(shù)量積可以處理有關(guān)長度、角度和垂直的問題;二、過程與方法本節(jié)學(xué)習(xí)的關(guān)鍵是啟發(fā)學(xué)生理解平面向量數(shù)量積的定義,理解定義之后便可引導(dǎo)學(xué)生推導(dǎo)數(shù)量積的運算律
2025-04-27 13:28