【總結(jié)】專(zhuān)題八平面向量的基本定理(A卷)(測(cè)試時(shí)間:120分鐘滿(mǎn)分:150分)第Ⅰ卷(共60分)一、選擇題:本大題共12個(gè)小題,每小題5分,,只有一項(xiàng)是符合題目要求的.,向量,則向量()A.B.C.D. 【答案】A【解析】∵=(3,1),∴=(-7,-4),故選A.2.【201
2025-03-25 01:22
【總結(jié)】......平面向量數(shù)量積運(yùn)算題型一 平面向量數(shù)量積的基本運(yùn)算例1 (1)(2014·天津)已知菱形ABCD的邊長(zhǎng)為2,∠BAD=120°,點(diǎn)E,F(xiàn)分別在邊BC,DC上,BC=3BE,DC=·=1,則λ的值為
2025-06-25 14:47
【總結(jié)】平面向量練習(xí)題一.填空題。1.等于________.2.若向量a=(3,2),b=(0,-1),則向量2b-a的坐標(biāo)是________.3.平面上有三個(gè)點(diǎn)A(1,3),B(2,2),C(7,x),若∠ABC=90°,則x的值為_(kāi)_______.、b滿(mǎn)足|a|=1,|b|=,(a+b)⊥(2a-b),則向量a與b的夾角為_(kāi)_______.5.已知向量a=(
2025-06-23 18:41
【總結(jié)】平面向量一、選擇題1、已知向量( )A. B. C. D.2、已知向量則的坐標(biāo)是( )A. B. C. D.3、已知且∥,則x等于( )A.3 B. C. D.4、若則與的夾角的余弦值為( )A. B. C. D.5、若,與的夾角是,則等于( )A.12 B. C. D.
2025-06-22 14:20
【總結(jié)】1向量練習(xí)1設(shè)??20??,已知兩個(gè)向量????sin,cos1?OP,????cos2,sin22???OP,則向量21PP長(zhǎng)度的最大值是()A新疆源頭學(xué)子小屋特級(jí)教師王新敞htp:@:/2B新疆源頭學(xué)子小屋特級(jí)教師王新敞htp:@:/3C新疆源頭學(xué)子小屋特
2025-01-08 20:35
【總結(jié)】第三節(jié)平面向量的數(shù)量積及平面向量應(yīng)用舉例解分析用數(shù)量積和模的定義以及運(yùn)算性質(zhì),逐題計(jì)算.79642)(||)4(3427158||3120cos||||5||2352)3()2)(3(.594||||2.32132120cos||||12222o2222222o???????????
2024-11-11 09:01
【總結(jié)】坐標(biāo)表示、模、夾角復(fù)習(xí)引入1.平面向量的數(shù)量積(內(nèi)積)的定義:復(fù)習(xí)引入1.平面向量的數(shù)量積(內(nèi)積)的定義:.)(cos||||或內(nèi)積的數(shù)量積與叫做,我們把數(shù)量夾角為它們的,和已知兩個(gè)非零向量bababa??復(fù)習(xí)引入1.平面向量的數(shù)量積
2024-10-18 14:26
【總結(jié)】平面向量數(shù)量積的坐標(biāo)表示四川省沐川中學(xué)劉少民平面向量數(shù)量積復(fù)習(xí)a和b,它們的夾角為θ,則a&
2024-11-09 05:07
【總結(jié)】精品資源普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)—數(shù)學(xué)[人教版]高三新數(shù)學(xué)第一輪復(fù)習(xí)教案(講座26)—平面向量的數(shù)量積及應(yīng)用一.課標(biāo)要求:1.平面向量的數(shù)量積①通過(guò)物理中"功"等實(shí)例,理解平面向量數(shù)量積的含義及其物理意義;②體會(huì)平面向量的數(shù)量積與向量投影的關(guān)系;③掌握數(shù)量積的坐標(biāo)表達(dá)式,會(huì)進(jìn)行平面向量數(shù)量積的運(yùn)算;④能運(yùn)用數(shù)量積表示兩個(gè)向量的夾角,會(huì)用數(shù)
2025-06-29 17:37
【總結(jié)】《平面向量數(shù)量積的物理背景及其含義》教案課題:§平面向量數(shù)量積的物理背景及其含義教材:普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)(人教A版)數(shù)學(xué)必修4一、教學(xué)目標(biāo)1、了解平面向量數(shù)量積的物理背景,理解數(shù)量積的含義及其物理意義;2、體會(huì)平面向量的數(shù)量積與向量投影的關(guān)系,理解掌握數(shù)量積的性質(zhì)和運(yùn)算律,并能運(yùn)用性質(zhì)和運(yùn)算律進(jìn)行相關(guān)的判斷和運(yùn)算;3、體會(huì)類(lèi)比的數(shù)學(xué)思想
2024-10-06 19:16
【總結(jié)】平面向量數(shù)量積求解的三種途徑平面向量數(shù)量積是平面向量一章中的重要內(nèi)容,是高中數(shù)學(xué)三角函數(shù)、平面幾何、解析幾何等章節(jié)知識(shí)的交匯點(diǎn),也是高考重點(diǎn)考查的知識(shí).許多學(xué)生在解此類(lèi)題時(shí)感覺(jué)困難,究其原因,就是學(xué)生對(duì)數(shù)量積的概念理解不透徹.下面就求解方法歸納如下:一.定義法例1 已知直線(xiàn)與圓交于兩點(diǎn),是坐標(biāo)原點(diǎn),求的值.分析 向量,的模都是2,由直線(xiàn)與圓相交時(shí)弦心距、半
2025-06-19 23:26
【總結(jié)】《平面向量數(shù)量積的坐標(biāo)表示、模、夾角》說(shuō)課稿 一、教材分析 :平面向量數(shù)量積的坐標(biāo)表示,就是運(yùn)用坐標(biāo)這一量化工具表達(dá)向量的數(shù)量積運(yùn)算,為研究平面中的距離、垂直、角度等問(wèn)題提供了全新的手段。它把向量...
2024-12-03 02:07
【總結(jié)】平面向量數(shù)量積的坐標(biāo)表示、模、夾角(教案)教學(xué)目標(biāo)1.知識(shí)目標(biāo):⑴掌握平面向量數(shù)量積的坐標(biāo)表達(dá)式,會(huì)進(jìn)行平面向量數(shù)量積的運(yùn)算;⑵掌握平面向量的模的坐標(biāo)公式以及平面內(nèi)兩點(diǎn)間的距離公式;⑶掌握兩個(gè)平面向量的夾角的坐標(biāo)公式;⑷能用平面向量數(shù)量積的坐標(biāo)公式判斷兩個(gè)平面向量的垂直關(guān)系;2.能力目標(biāo):⑴培養(yǎng)學(xué)生的動(dòng)手能力和探索能力;⑵通過(guò)平面向量數(shù)量積的數(shù)與
2025-04-17 01:40
【總結(jié)】【金榜教程】2021年高中數(shù)學(xué)試題北師大版必修4(30分鐘50分)一、選擇題(每小題4分,共16分)a=(3,1),b=(x,-3),且a⊥b,則實(shí)數(shù)x的值為()(A)-9(B)9(C)1(D)-12.(2021·遼寧高考)已知向量a=(2,1),b
2024-12-03 03:14
【總結(jié)】平面向量數(shù)量積運(yùn)算題型一 平面向量數(shù)量積的基本運(yùn)算例1 (1)(2014·天津)已知菱形ABCD的邊長(zhǎng)為2,∠BAD=120°,點(diǎn)E,F(xiàn)分別在邊BC,DC上,BC=3BE,DC=·=1,則λ的值為_(kāi)_______.(2)已知圓O的半徑為1,PA,PB為該圓的兩條切線(xiàn),A,B為切點(diǎn),那么·的最小值為( )A.-4+ B.-3+C.-
2025-06-25 14:57