【總結(jié)】平面向量專題一、選擇題,邊的高為,若,,,,,則(A)(B)(C)(D),向量且,則(A)(B)(C)(D),b是兩個(gè)非零向量。|a+b|=|a|-|b|,則a⊥b
2025-04-17 13:06
【總結(jié)】必修四平面向量基礎(chǔ)練習(xí)題1.下列向量中,與向量不共線的一個(gè)向量()A.B.C.D.2.已知正六邊形,在下列表達(dá)式①;②;③;④中,與等價(jià)的有()A.個(gè)B.個(gè)C.個(gè)D.個(gè)3.如圖,的邊長(zhǎng)為,分別是中點(diǎn),記,,則()A.B.C.D.,但的值不確定4.若向量=(
2025-03-25 02:04
【總結(jié)】平面向量練習(xí)題1、選擇題:1.已知平行四邊形ABCD,O是平行四邊形ABCD所在平面內(nèi)任意一點(diǎn),,,,則向量等于()A.++B.+-C.-+D.--2.已知向量與的夾角為,則等于() (A)5 ?。˙)4
2025-03-25 01:23
【總結(jié)】平面向量的實(shí)際背景及基本概念平面向量的線性運(yùn)算——教材解讀山東劉乃東一、要點(diǎn)精講1.向量的有關(guān)概念(1)向量:既有大小又有方向的量叫向量,一般用,,,…來(lái)表示,或用有向線段的起點(diǎn)與終點(diǎn)的大寫字母表示,如。向量的大小,即向量的模(長(zhǎng)度),記作。注:向量與數(shù)量不同,數(shù)量之間可以比較大小,而兩個(gè)向量不能比較大小。(2)零向量:長(zhǎng)度為零的向量
2024-08-30 16:13
【總結(jié)】2014高考數(shù)學(xué)一輪復(fù)習(xí)單元練習(xí)--平面向量I卷一、選擇題1.設(shè)向量a,b滿足|a|=|b|=1,a·b=-,則|a+2b|=( )A. B.C. D.【答案】B2.已知A、B、C是不在同一直線上的三點(diǎn),O是平面ABC內(nèi)的一定點(diǎn),P是平面ABC內(nèi)的一動(dòng)點(diǎn),若(λ∈[0,+∞)),則點(diǎn)P的軌跡一定過(guò)△ABC的()A.外心 B.內(nèi)心 C.重心
2025-01-14 14:43
【總結(jié)】平面向量的基本定理及坐標(biāo)表示一、選擇題1、若向量=(1,1),=(1,-1),=(-1,2),則等于()A、+B、C、 D、+2、已知,A(2,3),B(-4,5),則與共線的單位向量是 ()A、 B、C、 D、
2025-06-24 19:14
【總結(jié)】第二章平面向量[基礎(chǔ)訓(xùn)練A組]一、選擇題1.化簡(jiǎn)得()A.B.C.D.2.設(shè)分別是與向的單位向量,則下列結(jié)論中正確的是()A.B.C.D.3.已知下列命題中:(1)若,且,則或,(2)若,則或(3)若不平行的兩個(gè)非零向量,滿足,則(4)若
【總結(jié)】歡迎交流唯一QQ1294383109希望大家互相交流平面向量一、選擇題1.若a=(1,2),b=(-3,0),(2a+b)∥(a-mb),則m=()A.-12C.2D.-2解析:選a=(1,2),b=(-3,0),所以2a+b=(-1,4),a-m
2024-08-22 20:07
【總結(jié)】向量的分解與向量的坐標(biāo)運(yùn)算若向量滿足條件A.6 B.5 C.4 D.3設(shè)向量則下列結(jié)論中正確的是A.B.D.已知向量若與平行則實(shí)數(shù)的值是()A.-2 B.0 C.1 D.2已知向量.若向量滿足則()A.B.
2025-04-17 12:52
【總結(jié)】平面向量的概念及線性運(yùn)算A組 專項(xiàng)基礎(chǔ)訓(xùn)練一、選擇題(每小題5分,共20分)1.給出下列命題:①兩個(gè)具有公共終點(diǎn)的向量,一定是共線向量;②兩個(gè)向量不能比較大小,但它們的模能比較大小;③λa=0(λ為實(shí)數(shù)),則λ必為零;④λ,μ為實(shí)數(shù),若λa=μb,則a與b共線.其中錯(cuò)誤命題的個(gè)數(shù)為 ( )A.1 B.2 C.3 D.4
2025-03-25 01:22
【總結(jié)】高一數(shù)學(xué)班講義1平面向量一、向量的有關(guān)概念:既有大小又有方向的量叫做向量.向量的大小叫
2025-01-10 04:39
【總結(jié)】數(shù)學(xué)第十一課第十一講平面向量所以同理得又,設(shè)的夾角為,則故夾角為,已知與垂直,與平行,則與的夾角大小是。解:由,得,解得,又由//,得解得。又,故與的夾角為。例題2:選擇題:(1)平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),已知兩點(diǎn)若點(diǎn)滿足其中且,則點(diǎn)的軌跡方程為()A.,B.,C.,D.。解:列出關(guān)于的關(guān)系等式,即且,消去選D。(2)O
【總結(jié)】§平面向量的數(shù)量積【學(xué)習(xí)目標(biāo)、細(xì)解考綱】的意義;體會(huì)數(shù)量積與投影的關(guān)系。。,可以處理有關(guān)長(zhǎng)度、角度和垂直問(wèn)題?!局R(shí)梳理、雙基再現(xiàn)】ab與的夾角。______向量ab與,我們把______________叫ab與的數(shù)量積。(或________)記作___________即a
2024-12-02 08:37
【總結(jié)】用心愛(ài)心專心第八章平面向量知識(shí)網(wǎng)絡(luò)第1講向量的概念與線性運(yùn)算★知識(shí)梳理★1.平面向量的有關(guān)概念:(1)向量的定義:既有____大小又有方向_________的量叫做向量.(2)表示方法:用有向線段來(lái)表示向量.有向線段的____長(zhǎng)度_____表示向量的大小,用
2025-01-09 14:49
【總結(jié)】......學(xué)習(xí)參考一、選擇題1.已知三點(diǎn)滿足,則的值())143()152()314(??,,、,,、,,?CBAACB??2.已知,,且,則(),?a|?bba/?5.已知()0