【總結(jié)】a和b,它們的夾角為θ,則a·b=abcos.a·b稱為向量a與b的數(shù)量積(或內(nèi)積).θa·b等于a的長度a與b在a的方向上的投影bcos的乘積.θ6.a·b≤ab.3.a⊥
2024-11-10 08:35
【總結(jié)】平面向量數(shù)量積的坐標(biāo)表示、模、夾角.),1,1(),32,1(1?的夾角與求已知例baba????例2已知A(1,2),B(2,3),C(-2,5),試判斷?ABC的形狀,并給出證明.練習(xí)(1)已知=(4,3),向量是垂直于的單位向量,求.abab
2025-04-24 09:59
【總結(jié)】人教版新課標(biāo)普通高中◎數(shù)學(xué)④必修平面向量的數(shù)量積教案A第1課時教學(xué)目標(biāo)一、知識與技能1.掌握平面向量的數(shù)量積及其幾何意義;2.掌握平面向量數(shù)量積的重要性質(zhì)及運(yùn)算律;3.了解用平面向量的數(shù)量積可以處理有關(guān)長度、角度和垂直的問題;二、過程與方法本節(jié)學(xué)習(xí)的關(guān)鍵是啟發(fā)學(xué)生理解平面向量數(shù)量積的定義,理解定義之后便可引導(dǎo)學(xué)生推導(dǎo)數(shù)量積的運(yùn)算律
2025-04-27 13:28
【總結(jié)】平面向量的數(shù)量積如果一個物體在力F作用下產(chǎn)生位移S,那么F所做的功為:θ表示力F的方向與位移S的方向的夾角。位移SOA問題情境θFFθSW=│F││S│COSθ平面向量的數(shù)量積學(xué)習(xí)目標(biāo):1、掌握平面向量的數(shù)量積的定義及幾何意義2、掌握平面向量數(shù)量積的性質(zhì)下面請
2024-11-18 15:26
【總結(jié)】第3講平面向量的數(shù)量積A級基礎(chǔ)演練(時間:30分鐘滿分:55分)一、選擇題(每小題5分,共20分)1.若向量a=(3,m),b=(2,-1),a·b=0,則實(shí)數(shù)m的值為().A.-32C.2D.6解析由a·b=3
2024-12-08 08:09
【總結(jié)】第一篇:平面向量的應(yīng)用 平面向量的應(yīng)用 平面向量是一個解決數(shù)學(xué)問題的很好工具,它具有良好的運(yùn)算和清晰的幾何意義。在數(shù)學(xué)的各個分支和相關(guān)學(xué)科中有著廣泛的應(yīng)用。下面舉例說明。 一、用向量證明平面幾何...
2024-11-15 03:33
【總結(jié)】第一篇:高中數(shù)學(xué)新課程創(chuàng)新教學(xué)設(shè)計(jì)案例50篇40平面向量的數(shù)量積 平面向量的數(shù)量積 教材分析 兩個向量的數(shù)量積是中學(xué)代數(shù)以往內(nèi)容中從未遇到過的一種新的乘法,它區(qū)別于數(shù)的乘法.這篇案例從學(xué)生熟知的...
2024-10-21 03:39
【總結(jié)】第一頁,編輯于星期六:點(diǎn)三十二分。,2.4平面向量的數(shù)量積2.4.1平面向量數(shù)量積的物理背景及其含義,第二頁,編輯于星期六:點(diǎn)三十二分。,,登高攬勝拓界展懷,課前自主學(xué)習(xí),第三頁,編輯于星期六:點(diǎn)三十...
2024-10-22 18:49
【總結(jié)】Fs?┓Fs?┓W=|F||s|cos?OABFS?功:為起點(diǎn),如果以,和對于兩個非零向量Oba??a??OA作??bOB的夾角與叫做向量那么AOB???ba?oAB?b?a夾角的范圍:001800???顯然
2025-07-23 05:52
【總結(jié)】 2. 平面向量數(shù)量積的物理背景及其含義 考試標(biāo)準(zhǔn) 課標(biāo)要點(diǎn) 學(xué)考要求 高考要求 平面向量數(shù)量積的概念及其物理意義 b b 平面向量投影的概念 a a 平面向量...
2025-04-03 04:20
【總結(jié)】課題:平面向量的數(shù)量積(2)班級:姓名:學(xué)號:第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】1、掌握平面向量數(shù)量積的坐標(biāo)表示;2、掌握向量垂直的坐標(biāo)表示的等價條件?!菊n前預(yù)習(xí)】1、(1)已知向量a和b的夾角是3?,|a|=2,|b|=1,則(a+b)2
2024-12-05 00:28
【總結(jié)】第3課時平面向量的數(shù)量積基礎(chǔ)過關(guān)1.兩個向量的夾角:已知兩個非零向量和,過O點(diǎn)作=,=,則∠AOB=θ(0°≤θ≤180°)叫做向量與的.當(dāng)θ=0°時,與;當(dāng)θ=180°時,與;如果與的夾角是90°,我們說與垂直,記作.2.兩個向量的數(shù)量積的定義:已知兩
2025-06-08 00:02
【總結(jié)】第一篇:平面向量基本定理(教學(xué)設(shè)計(jì)) 平面向量基本定理 教學(xué)設(shè)計(jì) 平面向量基本定理教學(xué)設(shè)計(jì) 一、教材分析 本節(jié)課是在學(xué)習(xí)了共線向量基本定理的前提下,進(jìn)一步研究平面內(nèi)任一向量的表示,為今后平面...
2024-11-15 04:09
【總結(jié)】高中數(shù)學(xué):《平面向量數(shù)量積的物理背景及其含義》課件(新人教A版必修4)平面向量的數(shù)量積的物理背景及其含義目標(biāo)導(dǎo)學(xué):1、能運(yùn)用數(shù)量積表示兩個向量的夾角,計(jì)算向量的長度;2、會用數(shù)量積判斷兩個平面向量的垂直關(guān)系。向量的夾角:已知兩個非零向量和,作,
2025-07-20 04:53
【總結(jié)】§向量的數(shù)量積一.問題情境:情境1:前面我們學(xué)習(xí)了平面向量的加法、減法和數(shù)乘三種運(yùn)算,那么向量與向量能否“相乘”呢??cos||||sFW???其中力和位移是向量,是與的夾角,而功W是數(shù)量.?F?s?s?F?情境2:一個物體在力F的作用下發(fā)生了
2024-11-18 07:35