【總結(jié)】第5課時基本不等式,能借助幾何圖形說明基本不等式的意義.(小)值.“一正二定三相等”.如圖是在北京召開的第24界國際數(shù)學(xué)家大會的會標(biāo),會標(biāo)是根據(jù)中國古代數(shù)學(xué)家趙爽的弦圖設(shè)計的,顏色的明暗使它看上去像一個風(fēng)車,代表中國人民熱情好客.在正方形ABCD中有4個全等的直角三角形,設(shè)直角三
2024-12-08 02:37
【總結(jié)】第一篇:高中數(shù)學(xué)基本不等式及其應(yīng)用教案 基本不等式及其應(yīng)用教案 教學(xué)目的 (1)使學(xué)生掌握基本不等式a2+b2≥2ab(a、b∈R,當(dāng)且僅當(dāng)a=b時取“=”號)和a3+b3+c3≥3abc(a、...
2024-10-29 06:13
【總結(jié)】第11課時:§基本不等式的證明(2)【三維目標(biāo)】:一、知識與技能;;,求最值時注意一正二定三相等。;基本不等式在證明題和求最值方面的應(yīng)用。二、過程與方法通過幾個例題的研究,進(jìn)一步掌握基本不等式2abab??,并會用此定理求某些函數(shù)的最大、最小值。三、情感、
2024-11-20 00:26
【總結(jié)】第7課時基本不等式的實際應(yīng)用,并會用基本不等式來解題..今天我們來探究基本不等式在實際生活中的應(yīng)用,我們先來看個實際例子:如圖,有一張單欄的豎向張貼的海報,它的印刷面積為72dm2(圖中陰影部分),上下空白各2dm,左右空白各1dm,則四周空白部分面積的最小值是dm2.問題1
2024-11-18 08:09
【總結(jié)】基本不等式與最大(小)值課時目標(biāo);(小)值問題.1.設(shè)x,y為正實數(shù)(1)若x+y=s(和s為定值),則當(dāng)______時,積xy有最____值,且這個值為________.(2)若xy=p(積p為定值),則當(dāng)______時,和x+y有最____值,且這個值為______.
2024-12-05 06:35
【總結(jié)】基本不等式A組基礎(chǔ)鞏固1.若x0,y0,且2x+8y=1,則xy有()A.最大值64B.最小值164C.最小值12D.最小值64解析:xy=xy??????2x+8y=2y+8x≥22y·8x=8xy,∴xy≥8,即xy≥64,當(dāng)且僅當(dāng)???
2024-12-08 20:20
【總結(jié)】含參數(shù)的一元二次不等式的解法解含參數(shù)的一元二次不等式,通常情況下,均需分類討論,那么如何討論呢?對含參一元二次不等式常用的分類方法有三種:一、按項的系數(shù)的符號分類,即;例1解不等式:分析:本題二次項系數(shù)含有參數(shù),,故只需對二次項系數(shù)進(jìn)行分類討論。解:∵解得方程兩根∴當(dāng)時,解集為當(dāng)時,不等式為,解集為當(dāng)時,解集為例2
2025-04-04 05:10
【總結(jié)】【高考調(diào)研】2021年高中數(shù)學(xué)課時作業(yè)31基本不等式1新人教版必修5(第一次作業(yè))1.下列函數(shù)中,最小值為4的函數(shù)是()A.y=x+4xB.y=sinx+4sinxC.y=ex+4e-xD.y=log3x+logx81答案C解析A、D不能保證是正數(shù)之和,sinx
2024-11-28 01:20
【總結(jié)】【高考調(diào)研】2021年高中數(shù)學(xué)課時作業(yè)32基本不等式2新人教版必修5(第二次作業(yè))1.下列函數(shù)中,最小值為4的是()A.f(x)=x+4xB.f(x)=2×x2+5x2+4C.f(x)=3x+4×3-xD.f(x)=lgx+logx10答案C
【總結(jié)】基本不等式:第1課時基本不等式1.理解并掌握基本不等式及其推導(dǎo)過程,明確基本不等式成立的條件.2.能利用基本不等式求代數(shù)式的最值.121.重要不等式當(dāng)a,b是任意實數(shù)時,有a2+b2≥2ab,當(dāng)且僅當(dāng)a=b時,等號成立.(1)公式中a,b的取值是
2024-11-17 19:03
【總結(jié)】第5課時基本不等式,能借助幾何圖形說明基本不等式的意義.(小)值.“一正二定三相等”.問題1上述情境中,正方形的面積為,4個直角三角形的面積的和,由于4個直角三角形的面積之和不大于正方形的面積,于是就可以得到一個不等式:,我們稱之為重要不等
2024-11-17 23:14
【總結(jié)】不等式的證明方法教學(xué)目標(biāo)知識與技能:比較法,綜合法,分析法:反證法,換元法,放縮法[過程與方法情感態(tài)度與價值觀教學(xué)重難點初步學(xué)會不等式證明的三種常用方法:比較法,綜合法,分析法教學(xué)
2024-11-20 00:30
【總結(jié)】基本不等式以培養(yǎng)學(xué)生探究精神為出發(fā)點,著眼于知識的生成和發(fā)展,著眼于學(xué)生的學(xué)習(xí)體驗,設(shè)置問題,由淺入深、循序漸進(jìn),給不同層次的學(xué)生提供思考、創(chuàng)造和成功的機(jī)會。特進(jìn)行如下教學(xué)設(shè)計:(一)設(shè)問激疑,創(chuàng)設(shè)情景展示北京召開的第24屆國際數(shù)學(xué)家大會的會標(biāo),讓學(xué)生思考,圖案由哪些幾何圖形拼湊而成,由此你能否找到一些相等或不等關(guān)系?接著通過三個問題
【總結(jié)】《基本不等式》一、內(nèi)容與內(nèi)容解析本節(jié)課是《普通高中課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)》人教A版必修5第三章《不等式》中《基本不等式》的第一課時,主要內(nèi)容是探索基本不等式的生成和證明過程及其簡單的應(yīng)用.本節(jié)內(nèi)容具有變通性、應(yīng)用性的特點,它與線性規(guī)劃呈并列結(jié)構(gòu),可用來求某些函數(shù)的值域和最值,也可解決實際生活中的最優(yōu)化配置問題.本節(jié)內(nèi)容由兩部分構(gòu)成,其一是
2024-12-08 07:03
【總結(jié)】【成才之路】2021年春高中數(shù)學(xué)第3章不等式3基本不等式第2課時基本不等式與最大(小)值同步練習(xí)北師大版必修5一、選擇題1.已知a≥0,b≥0,且a+b=2,則()A.a(chǎn)b≤12B.a(chǎn)b≥12C.a(chǎn)2+b2≥2D.a(chǎn)2+b2≤2[答案]C