【總結(jié)】第5課時(shí)基本不等式,能借助幾何圖形說(shuō)明基本不等式的意義.(小)值.“一正二定三相等”.如圖是在北京召開的第24界國(guó)際數(shù)學(xué)家大會(huì)的會(huì)標(biāo),會(huì)標(biāo)是根據(jù)中國(guó)古代數(shù)學(xué)家趙爽的弦圖設(shè)計(jì)的,顏色的明暗使它看上去像一個(gè)風(fēng)車,代表中國(guó)人民熱情好客.在正方形ABCD中有4個(gè)全等的直角三角形,設(shè)直角三
2024-12-08 02:37
【總結(jié)】如果a,b∈R,那么a2+b2≥2ab(當(dāng)且僅當(dāng)a=b時(shí)取“=”)證明:222)(2baabba??????????????0)(0)(22babababa時(shí),當(dāng)時(shí),當(dāng)abba222??1.定理適用范圍:Rba?,2.取“=”的條件:ba?定理:
2024-11-18 08:48
【總結(jié)】《基本不等式》一、內(nèi)容與內(nèi)容解析本節(jié)課是《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)》人教A版必修5第三章《不等式》中《基本不等式》的第一課時(shí),主要內(nèi)容是探索基本不等式的生成和證明過(guò)程及其簡(jiǎn)單的應(yīng)用.本節(jié)內(nèi)容具有變通性、應(yīng)用性的特點(diǎn),它與線性規(guī)劃呈并列結(jié)構(gòu),可用來(lái)求某些函數(shù)的值域和最值,也可解決實(shí)際生活中的最優(yōu)化配置問(wèn)題.本節(jié)內(nèi)容由兩部分構(gòu)成,其一是
2024-12-08 07:03
【總結(jié)】3.基本不等式的證明學(xué)習(xí)目標(biāo)預(yù)習(xí)導(dǎo)學(xué)典例精析欄目鏈接情景導(dǎo)入如下圖所示,以線段a+b的長(zhǎng)為直徑作圓,在直徑AB上取點(diǎn)C,使AC=a,CB=b,過(guò)點(diǎn)C作垂直于直徑AB的弦DD′,連接AD、DB,則DC能否用a,b表示,DD′與A
2024-11-17 19:03
【總結(jié)】第2課時(shí)基本不等式的應(yīng)用1.復(fù)習(xí)鞏固基本不等式.2.能利用基本不等式求函數(shù)的最值,并會(huì)解決有關(guān)的實(shí)際應(yīng)用問(wèn)題.121.重要不等式a2+b2≥2ab(1)證明:課本應(yīng)用了圖形間的面積關(guān)系推導(dǎo)出了a2+b2≥2ab,也可用分析法證明如下:要證明a2+b
2024-11-18 08:10
【總結(jié)】:2baab??復(fù)習(xí)引入基本不等式:.)0,0(2????baabba;222abba??講授新課.4,的最值,求是正數(shù)且abbaba??例1.講授新課.4,的最值,求是正數(shù)且abbaba??例1.變式1..42,的最值,求
2024-11-19 18:02
【總結(jié)】全方位教學(xué)輔導(dǎo)教案學(xué)科:數(shù)學(xué)任課教師:授課時(shí)間:2012年11月3日星期姓名性別女年
2025-04-17 13:03
【總結(jié)】:2baab??引入新課提問(wèn)1:我們把“風(fēng)車”造型抽象成下圖.在正方形ABCD中有4個(gè)全等的直角三角形.設(shè)直角三角形的兩條直角邊的長(zhǎng)為a、b,那么正方形的邊長(zhǎng)為多少?面積為多少呢?ADCBGEFH引入新課提問(wèn)1:我們把“風(fēng)車”造型抽象成下圖.在
2024-11-19 18:20
【總結(jié)】高中數(shù)學(xué)基本不等式的巧用1.基本不等式:≤(1)基本不等式成立的條件:a>0,b>0.(2)等號(hào)成立的條件:當(dāng)且僅當(dāng)a=b時(shí)取等號(hào).2.幾個(gè)重要的不等式(1)a2+b2≥2ab(a,b∈R);(2)+≥2(a,b同號(hào));(3)ab≤2(a,b∈R);(4)≥2(a,b∈R).3.算術(shù)平均數(shù)與幾何平均數(shù)設(shè)a>0,b>0,則a,b的算術(shù)平均數(shù)為,幾何平均數(shù)
2025-04-04 05:08
【總結(jié)】不等式的性質(zhì)不等式不等式的證明不等式的解法應(yīng)用不等式的性質(zhì)互逆性—ab傳遞性—ab,bc可加性—ab推論移項(xiàng)法則—a+cb同向可加—ab,cd可乘性—ab,推論同向正
2024-07-31 01:43
【總結(jié)】第一篇:高中數(shù)學(xué)新課程創(chuàng)新教學(xué)設(shè)計(jì)案例50篇50基本不等式 基本不等式: 教材分析 “”的證明學(xué)生比較容易理解,學(xué)生難理解的是“當(dāng)且僅當(dāng)a=b時(shí)取?=?號(hào)”的真正數(shù)學(xué)內(nèi)涵,所謂“當(dāng)且僅當(dāng)”就是“...
2024-10-26 06:49
【總結(jié)】第1頁(yè)數(shù)學(xué)(理)新課標(biāo)·高考二輪總復(fù)習(xí)第一部分高考專題講解第2頁(yè)數(shù)學(xué)(理)新課標(biāo)·高考二輪總復(fù)習(xí)專題五數(shù)列、不等式、推理與證明第3頁(yè)數(shù)學(xué)(理)新課標(biāo)·高考二輪總復(fù)習(xí)第十三講
2025-05-07 22:33
【總結(jié)】第一篇:基本不等式與不等式基本證明 課時(shí)九基本不等式與不等式基本證明 第一部分:基本不等式變形技巧的應(yīng)用 基本不等式在求解最值、值域等方面有著重要的應(yīng)用,利用基本不等式時(shí),關(guān)鍵在對(duì)已知條件的靈活...
2024-10-29 03:11
【總結(jié)】柯西不等式?答案:及幾種變式.、b、c、d為實(shí)數(shù),求證證法:(比較法)=….=定理:若a、b、c、d為實(shí)數(shù),則.變式:或或.定理:設(shè),則(當(dāng)且僅當(dāng)時(shí)取等號(hào),假設(shè))變式:.定理:設(shè)是兩個(gè)向量,則.等號(hào)成立?(是零向量,或者共線)練習(xí):已知a、b、c、d為實(shí)數(shù),求證.
2025-04-04 05:05
【總結(jié)】基本不等式:第1課時(shí)基本不等式1.理解并掌握基本不等式及其推導(dǎo)過(guò)程,明確基本不等式成立的條件.2.能利用基本不等式求代數(shù)式的最值.121.重要不等式當(dāng)a,b是任意實(shí)數(shù)時(shí),有a2+b2≥2ab,當(dāng)且僅當(dāng)a=b時(shí),等號(hào)成立.(1)公式中a,b的取值是