【總結】......《不等式》知識點歸納一.(1)解不等式是求不等式的解集,最后務必有集合的形式表示;不等式解集的端點值往往是不等式對應方程的根或不等式有意義范圍的端點值.(2)解分式不等式的一般解題思路是什么?(移項通分,分子分母分解因式,x的
2025-06-24 19:24
【總結】解不等式高考要求不等式要求層次重難點一元二次不等式C解一元二次不等式例題精講板塊一:解一元二次不等式(一)知識內容1.含有一個未知數(shù),且未知數(shù)的最高次數(shù)為的整式不等式,叫做一元二次不等式.一元二次不等式的解集,一元二次方程的根及二次函數(shù)圖象之間的關系如下表(以為例):判別式
2025-07-24 02:03
【總結】淄川般陽中學洪貴云基本不等式:(說課)2baab??教材分析教法分析教學目標教學過程設計說明一.教材分析(一)教材的地位和作用(二)課時安排一.教材分析(一)教材的地位和作用基本不等式
2025-08-04 23:52
【總結】基本不等式的證明課時目標;.1.如果a,b∈R,那么a2+b2____2ab(當且僅當______時取“=”號).2.若a,b都為____數(shù),那么a+b2____ab(當且僅當a____b時,等號成立),稱上述不等式為______不等式,其中________稱為a,b的算術平均數(shù),
2024-12-05 10:13
【總結】第5課時基本不等式,能借助幾何圖形說明基本不等式的意義.(小)值.“一正二定三相等”.如圖是在北京召開的第24界國際數(shù)學家大會的會標,會標是根據中國古代數(shù)學家趙爽的弦圖設計的,顏色的明暗使它看上去像一個風車,代表中國人民熱情好客.在正方形ABCD中有4個全等的直角三角形,設直角三
2024-12-08 02:37
【總結】一元二次不等式及其解法1.形如的不等式稱為關于的一元二次不等式.2.一元二次不等式與相應的函數(shù)、相應的方程之間的關系:判別式二次函數(shù)()的圖象3、解一元二次不等式步驟:1、把二次項的系數(shù)變?yōu)檎摹#ㄈ绻秦?,那么在不等式兩邊都乘?1,把系數(shù)變?yōu)檎?、解對應的一元二次方程。(先
2025-04-04 05:05
【總結】基本不等式【考綱要求】,理解基本不等式的幾何意義,并掌握定理中的不等號“≥”取等號的條件是:當且僅當這兩個數(shù)相等;(小)值問題.;能夠解決一些簡單的實際問題【知識網絡】基本不等式重要不等式最大(小)值問題基本不等式基本不等式的應用【考點梳理】考點一:重要不等式及幾何意義1.重要不等式:如果,那么(當且僅當時取等號“=”).2.基
2025-08-05 04:42
【總結】基本不等式的應用課時目標;(小)值問題.1.設x,y為正實數(shù)(1)若x+y=s(和s為定值),則當______時,積xy有最____值,且這個值為________.(2)若xy=p(積p為定值),則當______時,和x+y有最____值,且這個值為______.2.利用
2024-12-05 10:12
【總結】不等式與不等式組一、知識結構圖二、知識要點(一、)不等式的概念1、不等式:一般地,用不等符號(“<”“>”“≤”“≥”)表示大小關系的式子,叫做不等式,用“≠”表示不等關系的式子也是不等式。不等號主要包括:>、<、≥、≤、≠。2、不等式的解:使不等式左右兩邊成立的未知數(shù)的值,叫做不等式的解。3、不等式的解集:一個含有未知數(shù)的不等式的所有解,組
2025-06-24 19:20
【總結】3.基本不等式的證明學習目標預習導學典例精析欄目鏈接情景導入如下圖所示,以線段a+b的長為直徑作圓,在直徑AB上取點C,使AC=a,CB=b,過點C作垂直于直徑AB的弦DD′,連接AD、DB,則DC能否用a,b表示,DD′與A
2024-11-17 19:03
【總結】如果a,b∈R,那么a2+b2≥2ab(當且僅當a=b時取“=”)證明:222)(2baabba??????????????0)(0)(22babababa時,當時,當abba222??1.定理適用范圍:Rba?,2.取“=”的條件:ba?定理:
2024-11-18 08:48
【總結】柯西不等式?答案:及幾種變式.、b、c、d為實數(shù),求證證法:(比較法)=….=定理:若a、b、c、d為實數(shù),則.變式:或或.定理:設,則(當且僅當時取等號,假設)變式:.定理:設是兩個向量,則.等號成立?(是零向量,或者共線)練習:已知a、b、c、d為實數(shù),求證.
【總結】高中數(shù)學選修2----2知識點第一章導數(shù)及其應用一.導數(shù)概念的引入1.導數(shù)的物理意義:瞬時速率。一般的,函數(shù)在處的瞬時變化率是,我們稱它為函數(shù)在處的導數(shù),記作或,即=2.導數(shù)的幾何意義:,我們可以看出當點趨近于時,直線與曲線相切。容易知道,割線的斜率是,當點趨近于時,函數(shù)在處的導數(shù)就是切線PT的斜率k,即3.導函數(shù):當x變化時,便是x的一個函數(shù),我們
2025-08-05 19:28
【總結】基本不等式課時目標;.1.如果a,b∈R,那么a2+b2____2ab(當且僅當______時取“=”號).2.若a,b都為____數(shù),那么a+b2____ab(當且僅當a____b時,等號成立),稱上述不等式為______不等式,其中________稱為a,b的算術平均數(shù),___
2024-12-05 06:37
【總結】不等式的性質不等式不等式的證明不等式的解法應用不等式的性質互逆性—ab傳遞性—ab,bc可加性—ab推論移項法則—a+cb同向可加—ab,cd可乘性—ab,推論同向正
2025-07-22 01:43