【總結(jié)】基本不等式請嘗試用四個全等的直角三角形拼成一個“風(fēng)車”圖案?趙爽弦圖a2+b2≥2ab?該結(jié)論成立的條件是什么?若a,b∈R,那么?形的角度?數(shù)的角度a2+b2-2ab=(a-b)2≥0a0,b0
2025-11-08 05:40
【總結(jié)】第11課時:§基本不等式的證明(2)【三維目標】:一、知識與技能;;,求最值時注意一正二定三相等。;基本不等式在證明題和求最值方面的應(yīng)用。二、過程與方法通過幾個例題的研究,進一步掌握基本不等式2abab??,并會用此定理求某些函數(shù)的最大、最小值。三、情感、
2025-11-11 00:26
【總結(jié)】不等關(guān)系與不等式教學(xué)目標:1.知識與技能:掌握不等式的基本性質(zhì),會用不等式的性質(zhì)證明簡單不等式,掌握比較大小的方法.2.過程與方法:通過解決具體問題,學(xué)會依據(jù)具體問題的實際背景分析問題、解決問題的方法.3.情感、態(tài)度與價值觀:通過解決具體問題,體會數(shù)學(xué)在生活中的重要作用,培養(yǎng)嚴謹?shù)乃季S習(xí)慣.重點:不等式的概念和比
2024-12-09 03:41
【總結(jié)】不等關(guān)系與不等式(1)教學(xué)目標:1.知識與技能:通過具體情景,感受在現(xiàn)實世界和日常生活中存在著大量不等關(guān)系,理解不等式(組)的實際背景,掌握不等式的基本性質(zhì),會用不等式的性質(zhì)證明簡單的不等式.2.過程與方法:通過解決具體問題,學(xué)會依據(jù)具體問題的實際背景分析問題、解決問題的方法.3.情感、態(tài)度與價值觀:通過解決具體問題,體會數(shù)
【總結(jié)】淄川般陽中學(xué)洪貴云基本不等式:(說課)2baab??教材分析教法分析教學(xué)目標教學(xué)過程設(shè)計說明一.教材分析(一)教材的地位和作用(二)課時安排一.教材分析(一)教材的地位和作用基本不等式
2025-08-04 23:52
【總結(jié)】第2課時基本不等式【課標要求】1.理解并掌握定理1、定理2,會用兩個定理解決函數(shù)的最值或值域問題.2.能運用平均值不等式(兩個正數(shù)的)解決某些實際問題.【核心掃描】1.基本不等式常用來考查函數(shù)最值等問題,要注意不等式成立的前提條件.(重點)2.實際應(yīng)用中的最值問題通常轉(zhuǎn)化為y=ax+bx
2025-07-23 17:21
【總結(jié)】第三章不等式課題:§不等式與不等關(guān)系第1課時授課類型:新授課【教學(xué)目標】1.知識與技能:通過具體情景,感受在現(xiàn)實世界和日常生活中存在著大量的不等關(guān)系,理解不等式(組)的實際背景,掌握不等式的基本性質(zhì);2.過程與方法:通過解決具體問題,學(xué)會依據(jù)具體問題的實際背景分析問題、解決問題的方法;3.情態(tài)與
2025-11-10 20:24
【總結(jié)】均值不等式的應(yīng)用(求最值)回顧一下重要不等式:均值不等式:222abab??(,0)2ababab???幾個重要的變形:2(0,0)ababab????2(,0)2ababab?????????222()(,)22a
2025-11-09 08:48
【總結(jié)】溫故知新1、比較兩實數(shù)大小的常用方法△=b2-4ac△0△=0△0)的圖象ax2+bx+c=0(a0)的根ax2+bx+0(a0)的解集ax2+bx+c0(a&
2025-11-08 17:33
【總結(jié)】專題基本不等式編者:高成龍專題基本不等式【一】基礎(chǔ)知識基本不等式:(1)基本不等式成立的條件:;(2)等號成立的條件:當且僅當時取等號.(1);(2);【二】例題分析【模塊1】“1”的巧妙替換【例1】已知,且,則的最小值為
2025-08-05 19:27
【總結(jié)】高中數(shù)學(xué)必修五基本不等式題型(精編)變2.下列結(jié)論正確的是()A.若,則B.若,則C.若,,則D.若,則3.若m=(2a-1)(a+2),n=(a+2)(a-3),則m,n的大小關(guān)系正確的是例2、解下列不等式(1)
2025-04-04 05:12
【總結(jié)】第5課時基本不等式,能借助幾何圖形說明基本不等式的意義.(小)值.“一正二定三相等”.如圖是在北京召開的第24界國際數(shù)學(xué)家大會的會標,會標是根據(jù)中國古代數(shù)學(xué)家趙爽的弦圖設(shè)計的,顏色的明暗使它看上去像一個風(fēng)車,代表中國人民熱情好客.在正方形ABCD中有4個全等的直角三角形,設(shè)直角三
2024-12-08 02:37
【總結(jié)】3.基本不等式的證明1.(a-b)2≥0?a2+b2≥2ab,那么(a)2+(b)2≥2ab,即a+b2≥ab,當且僅當a=b時,等號成立.+b2叫做a、b的算術(shù)平均數(shù).3.ab叫做a、b的幾何平均數(shù).4.基本不等式a+b2≥ab,說明兩個正數(shù)的幾何平均數(shù)不大于它們的
2024-12-05 10:13
【總結(jié)】一元二次不等式及其解法A組基礎(chǔ)鞏固1.二次方程ax2+bx+c=0的兩根為-2,3,a0的解集為()A.{x|x3或x2或x-3}C.{x|-2x3}D.{x|-3x2}
2024-12-09 03:40
【總結(jié)】不等關(guān)系與不等式(第2課時)學(xué)習(xí)目標...合作學(xué)習(xí)一、設(shè)計問題,創(chuàng)設(shè)情境問題1:等式的性質(zhì)有哪些?請大家用符號表示出來.問題2:根據(jù)等式的這些性質(zhì),你能猜想不等式的類似性質(zhì)嗎?請大家加以探究.二、信息交流,揭示規(guī)律問題3:上面得到的結(jié)論是否正確,需要我們給出證明